Collaborative Filtering Based-Recommender System Using Ant Colony Optimisation for Path Planning

Author(s):  
Oras Baker ◽  
Qing Yuan ◽  
Jie Liu
2019 ◽  
Vol 69 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Sangeetha Viswanathan ◽  
K. S. Ravichandran ◽  
Anand M. Tapas ◽  
Sellammal Shekhar

 In many of the military applications, path planning is one of the crucial decision-making strategies in an unmanned autonomous system. Many intelligent approaches to pathfinding and generation have been derived in the past decade. Energy reduction (cost and time) during pathfinding is a herculean task. Optimal path planning not only means the shortest path but also finding one in the minimised cost and time. In this paper, an intelligent gain based ant colony optimisation and gain based green-ant (GG-Ant) have been proposed with an efficient path and least computation time than the recent state-of-the-art intelligent techniques. Simulation has been done under different conditions and results outperform the existing ant colony optimisation (ACO) and green-ant techniques with respect to the computation time and path length.


Author(s):  
N. Botteghi ◽  
A. Kamilaris ◽  
L. Sinai ◽  
B. Sirmacek

Abstract. Collaborative swarms of robots/UAVs constitute a promising solution for precision agriculture and for automatizing agricultural processes. Since agricultural fields have complex topologies and different constraints, the problem of optimized path routing of these swarms is important to be tackled. Hence, this paper deals with the problem of optimizing path routing for a swarm of ground robots and UAVs in different popular topologies of agricultural fields. Four algorithms (Nearest Neighbour based on K-means clustering, Christofides, Ant Colony Optimisation and Bellman-Held-Karp) are applied on various farm types commonly found around Europe. The results indicate that the problem of path planning and the corresponding algorithm to use, are sensitive to the field topology and to the number of agents in the swarm.


2015 ◽  
Vol 9 ◽  
pp. 193-203
Author(s):  
Mirzakhmet SYZDYKOV ◽  
◽  
Madi UZBEKOV ◽  

2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


Sign in / Sign up

Export Citation Format

Share Document