Point Based Deep Learning to Automate Automotive Assembly Simulation Model Generation with Respect to the Digital Factory

Author(s):  
Christina Petschnigg ◽  
Stefan Bartscher ◽  
Jurgen Pilz
2018 ◽  
Vol 35 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Sheng Wang ◽  
Shiyang Fei ◽  
Zongan Wang ◽  
Yu Li ◽  
Jinbo Xu ◽  
...  

Abstract Motivation PredMP is the first web service, to our knowledge, that aims at de novo prediction of the membrane protein (MP) 3D structure followed by the embedding of the MP into the lipid bilayer for visualization. Our approach is based on a high-throughput Deep Transfer Learning (DTL) method that first predicts MP contacts by learning from non-MPs and then predicts the 3D model of the MP using the predicted contacts as distance restraints. This algorithm is derived from our previous Deep Learning (DL) method originally developed for soluble protein contact prediction, which has been officially ranked No. 1 in CASP12. The DTL framework in our approach overcomes the challenge that there are only a limited number of solved MP structures for training the deep learning model. There are three modules in the PredMP server: (i) The DTL framework followed by the contact-assisted folding protocol has already been implemented in RaptorX-Contact, which serves as the key module for 3D model generation; (ii) The 1D annotation module, implemented in RaptorX-Property, is used to predict the secondary structure and disordered regions; and (iii) the visualization module to display the predicted MPs embedded in the lipid bilayer guided by the predicted transmembrane topology. Results Tested on 510 non-redundant MPs, our server predicts correct folds for ∼290 MPs, which significantly outperforms existing methods. Tested on a blind and live benchmark CAMEO from September 2016 to January 2018, PredMP can successfully model all 10 MPs belonging to the hard category. Availability and implementation PredMP is freely accessed on the web at http://www.predmp.com. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 15 (1) ◽  
pp. 31-50
Author(s):  
Titas Savickas ◽  
Olegas Vasilecas

There are many approaches on how to analyse business processes, but the simulation is still not widely employed due to high costs associated with simulation model creation. In this paper, an approach on how to automatically generate dynamic business process simulation model is presented. The approach discovers belief network of the process from an event log and uses it to generate a simulation model automatically. Such model then can be further customised to facilitate analysis. For evaluation of the approach, conformance of the simulation results with the source event logs was calculated. The simulation results were event logs that were generated during the simulation of the discovered models. The evaluation showed that the approach could be used for initial simulation model generation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62734-62749 ◽  
Author(s):  
Kyi Thar ◽  
Thant Zin Oo ◽  
Yan Kyaw Tun ◽  
Do Hyeon Kim ◽  
Ki Tae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document