Reinforcement Learning Control for Six-Phase Permanent Magnet Synchronous Motor Position Servo Drive

Author(s):  
Wei-Lun Peng ◽  
Yung-Wen Lan ◽  
Shih-Gang Chen ◽  
Faa-Jeng Lin ◽  
Ray-I Chang ◽  
...  
Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 152
Author(s):  
Dongqi Ma ◽  
Hui Lin

To suppress the speed ripple of a permanent magnet synchronous motor in a seeker servo system, we propose an accelerated iterative learning control with an adjustable learning interval. First, according to the error of current iterative learning for the system, we determine the next iterative learning interval and conduct real-time correction on the learning gain. For the learning interval, as the number of iterations increases, the actual interval that needs correction constantly shortens, accelerating the convergence speed. Second, we analyze the specific structure of the controller while applying reasonable assumptions pertaining to its condition. Using the λ-norm, we analyze and apply our mathematical knowledge to obtain a strict mathematical proof on the P-type iterative learning control and obtain the condition of convergence for the controller. Finally, we apply the proposed method for periodic ripple inhibition of the torque rotation speed of the permanent magnet synchronous motor and establish the system model; we use the periodic load torque to simulate the ripple torque of the synchronous motor. The simulation and experimental results indicate the effectiveness of the method.


Author(s):  
Shiqi Zheng ◽  
Xiaoqi Tang ◽  
Bao Song

In this paper, a novel tuning strategy for the fractional order proportional integral and fractional order [proportional integral] controllers is proposed for the permanent magnet synchronous motor servo drive system. The tuning strategy is based on a genetic algorithm–wavelet neural network hybrid method. Firstly, the initial values of the control parameters of the fractional order controllers are selected according to a new global tuning rule, which is based on the genetic algorithm and considers both the time- and frequency-domain specifications. Secondly, the wavelet neural network is utilized to update the control parameters based on the selected initial values in an online manner which improves the capability of handling parameter variations and time-varying operating conditions. Furthermore, to improve the computational efficiency, a recursive least squares algorithm, which provides information to the wavelet neural network, is used to identify the permanent magnet synchronous motor drive system. Finally, experimental results on the permanent magnet synchronous motor drive system show both of the two proposed fractional order controllers work efficiently, with improved performance comparing with their traditional counterpart.


Sign in / Sign up

Export Citation Format

Share Document