Multi-objective evaluation based optimizing control method for shaft furnace roasting process

Author(s):  
Yan Ai-jun ◽  
Zhang Chun-xiao ◽  
Xu Zhe ◽  
Wang Pu
2014 ◽  
Vol 39 (8) ◽  
pp. 1231-1237
Author(s):  
Ling-Jian YE ◽  
Wei-Hong ZHONG ◽  
Zhi-Huan SONG

Author(s):  
Ali Thamallah ◽  
Anis Sakly ◽  
Faouzi M’Sahli

This article focuses on the tracking and stabilizing issues of a class of discrete switched systems. These systems are characterized by unknown switching sequences, a non-minimum phase, and time-varying or dead modes. In particular, for those governed by an indeterminate switching signal, it is very complicated to synthesize a control law able to systematically approach general reference-tracking difficulties. Taking into account the difficulty to express the dynamic of this class of systems, the present paper presents a new Dynamic matrix control method based on the multi-objective optimization and the truncated impulse response model. The formulation of the optimization problem aims to approach the general step-tracking issues under persistent and indeterminate mode changes and to overcome the stability problem along with retaining as many desirable features of the standard dynamic matrix control (DMC) method as possible. In addition, the formulated optimization problem integrates estimator variables able to manipulate the optimization procedure in favor of the active mode with an appropriate adjustment. It also provides a progressive and smooth multi-objective control law even in the presence of problems whether in subsystems or switching sequences. Finally, simulation examples and comparison tests are conducted to illustrate the potentiality and effectiveness of the developed method.


2011 ◽  
Vol 317-319 ◽  
pp. 1373-1384 ◽  
Author(s):  
Juan Chen ◽  
Chang Liang Yuan

To solve the traffic congestion control problem on oversaturated network, the total delay is classified into two parts: the feeding delay and the non-feeding delay, and the control problem is formulated as a conflicted multi-objective control problem. The simultaneous control of multiple objectives is different from single objective control in that there is no unique solution to multi-objective control problems(MOPs). Multi-objective control usually involves many conflicting and incompatible objectives, therefore, a set of optimal trade-off solutions known as the Pareto-optimal solutions is required. Based on this background, a modified compatible control algorithm(MOCC) hunting for suboptimal and feasible region as the control aim rather than precise optimal point is proposed in this paper to solve the conflicted oversaturated traffic network control problem. Since it is impossible to avoid the inaccurate system model and input disturbance, the controller of the proposed multi-objective compatible control strategy is designed based on feedback control structure. Besides, considering the difference between control problem and optimization problem, user's preference are incorporated into multi-objective compatible control algorithm to guide the search direction. The proposed preference based compatible optimization control algorithm(PMOCC) is used to solve the oversaturated traffic network control problem in a core area of eleven junctions under the simulation environment. It is proved that the proposed compatible optimization control algorithm can handle the oversaturated traffic network control problem effectively than the fixed time control method.


Author(s):  
Andy Dong ◽  
Alice M. Agogino

Abstract In design synthesis, engineering prototypes make an ideal representation medium for preliminary designs. Unlike parametric design wherein a pre-specified design is parametrically varied, design synthesis demands artistic creativity and engineering experience to transform the previously known components, relationships and designs into a new form. The process compels the designer to ascertain which prototypes will, in some sense, best satisfy the design task. The challenge in this assignment lies in selecting the “right” design prototype. This selection process typically entails an objective evaluation of different designs that perform the same functions or have similar intended behavior and comparing trade-offs between alternate designs. This paper introduces a multi-objective spectral optimization algorithm for the selection of design prototypes based upon their functional representations. The optimization algorithm returns an index of rank, scoring the functional similarity of the proposed design to the goal design. Two illustrative examples apply the algorithm to the selection of a heat fin and beam.


Sign in / Sign up

Export Citation Format

Share Document