Optimal Power Splitting of Full Duplex Wireless Powered Communication Networks with Two-Way Relay

Author(s):  
Xin Song ◽  
Yue Ni ◽  
Xiuwei Han ◽  
Siyang Xu
2021 ◽  
Author(s):  
Saleemullah Memon ◽  
Kamran Ali Memon ◽  
Junaid Ahmed Uqaili ◽  
Kamlesh Kumar Soothar ◽  
Rabnawaz Sarmad Uqaili ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2020 ◽  
Vol 12 (10) ◽  
pp. 175
Author(s):  
Xin Song ◽  
Lin Xia ◽  
Siyang Xu ◽  
Yue Wang

In this paper, the secure communication based on the full-duplex (FD) device-to-device (D2D) in cellular networks is proposed. For the proposed scheme, the novel model is established, in which a D2D user is played as a relay operating in FD mode to assist in the secure transmission of uplink information. Considering that the D2D user as a relay is untrusted, D2D link rate maximization is formulated with the constraint of secrecy rate, which ensures the security of uplink cellular networks. To cope with the optimization problem, the optimal power allocation factors of the cellular user (CU) and the D2D user are jointly optimized. Firstly, by using the monotonicity of the objective function, the optimal solution of the power allocation factor at the D2D user can be obtained. Subsequently, the closed-form expression of the optimal power allocation factor at the CU is derived and verified that the solution is the global minimum point. Simulation results verify that the proposed scheme has better output performance than the conventional scheme.


2020 ◽  
Vol 69 (9) ◽  
pp. 9822-9836 ◽  
Author(s):  
Rui Ma ◽  
Haowei Wu ◽  
Jinglan Ou ◽  
Shizhong Yang ◽  
Yue Gao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document