allocation factor
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 3)

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Enken Hassold ◽  
Wiebke Galert ◽  
Jona Schulze

AbstractIt is acknowledged that a variety of chemicals enter the environment and may cause joint effects. Chemicals regulated under the European Chemicals Regulation REACH are often part of formulated mixtures and during their processing and use in various products they can be jointly released via sewage treatment plants or diffuse sources, and may combine in the environment. One can differentiate between intentional mixtures, and unintentional mixtures. In contrast to other substance-oriented legislations, REACH contains no explicit requirements for an assessment of combined effects, exposures and risks of several components. Still, it requires ensuring the safe use of substances on their own, in mixtures, and in articles. The available options to address intentional as well as unintentional mixtures are presented and discussed with respect to their feasibility under REACH, considering the responsibilities, communication tasks and information availability of the different actors (registrants, downstream-user and authorities). Specific mixture assessments via component-based approaches require a comprehensive knowledge on substances properties, uses, fate and behaviour, and the composition of the mixture under consideration. This information is often not available to the responsible actor. In principle, intentional mixtures of known composition can be assessed by the downstream-user. But approaches have to be improved to ensure a transparent communication and sound mixture assessment. In contrast, unintentional mixtures appear to be better addressable via generic approaches such as a mixture allocation factor during the chemical safety assessment, although questions on the magnitude, implementation and legal mandates remain. Authorities can conduct specific mixture risk assessments in well-defined and prioritized cases, followed by subsequent regulatory measures. In order to address intentional and unintentional mixtures within the current REACH framework, legal mandates together with guidance for the different actors are needed. Furthermore, further data on mixture compositions, uses and co-exposures need to be made accessible via shared databases.


2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Imtiaz Akber Chowdhury

In the recent era, unmanned aerial vehicle (UAV) plays an important role in numerous application fields related to the wireless communication system. Due to its precise control, efficient deployment, and affordable cost, UAV-assisted communication attracts significant attention to all the sectors including the defense sector, agriculture sector, and security purpose, and so on. Though UAVassisted relaying has enormous advantages but there are potential challenges while UAV deploys as a relay. For example, deploying UAV in the wireless communication field, its battery life is the main concern due to its limited battery size and storage capacity. To get significant benefits from UAV while deployed in the cooperative communication network, the battery status of the UAV is an unavoidable issue. To minimize the aforementioned problem, energy harvesting (EH) techniques can be an efficient solution. The UAV can harvest energy from the transmitted power by the source and with the help of this harvested energy UAV can retransmit the signal to the destination. However, there are several parameters that also significantly influence the UAV-based cooperative system performance such as UAV’s position, time allocation factor and power allocation factor, and UAV’s height. Considering the importance of the aforementioned parameters, in this paper, we have considered simultaneous wireless information and power transfer (SWIPT) enabled UAV-assisted relaying network and evaluate the system outage performance with different parameters aspects. We have provided some insight about the parameters such as the UAV’s position, the power allocation factor and the time allocation factor and the UAV’s height by providing simulation results such as the outage probability versus transmit power in the different urban scenario, the outage probability versus time allocation factor and power allocation factor and the outage probability versus UAV’s height. These simulation results clearly show the significance of the abovementioned parameters in wireless-powered UAVassisted cooperative communication. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


Author(s):  
Jianhua He ◽  
Guangheng Zhao ◽  
Lu Wang ◽  
Xue Sun ◽  
Lei Yang

AbstractIn this paper, we investigate the secrecy performance of short-packet transmissions in ultra-reliable and low-latency communications (URLLC). We consider the scenario where a multi-antenna source communicates with a single-antenna legitimate receiver requiring ultra-high reliability and low latency, in the presence of a single-antenna eavesdropper. In order to safeguard URLLC, the source transmits the artificial noise (AN) signal together with the confidential signal to confuse the eavesdropper. We adopt a lower bound on the maximal secrecy rate as the secrecy performance metric for short-packet transmissions in URLLC, which takes the target decoding error probabilities at the legitimate receiver and the eavesdropper into account. Using this metric, we first derive a compact expression of the generalized secrecy outage probability (SOP). Then, we formally prove that the generalized SOP is a convex function with respect to the power allocation factor between the confidential signal and the AN signal. We further determine the optimal power allocation factor that minimizes the generalized SOP. The results presented in this work can be useful for designing new secure transmission schemes for URLLC.


Author(s):  
Saurabh Srivastava ◽  
Prajna Parimita Dash ◽  
Sanjay Kumar

Non-orthogonal multiple access (NOMA) is intended to be used for the next generation 5G cellular networks. In this paper, the expressions for the channel capacities for symmetric and asymmetric NOMA networks have been analysed. The performance measure of user spectral efficiency and the sum-rate bounds, for the NOMA and the existing orthogonal multiple access (OMA) networks have been compared. Furthermore, analysis of user rate and capacity of NOMA network has been carried out and it is observed that the NOMA capacity region varies as a function of the power allocation factor. The corresponding models have been developed for both uplink and downlink, and simulated with MATLAB. The NOMA performance with imperfect Successive Interference Cancellation (SIC) decoding is also analysed for the downlink. It is also verified that the transmit power may be increased to counter the spectral efficiency reduction due to imperfect SIC.


2021 ◽  
Vol 13 (3) ◽  
pp. 343
Author(s):  
Zonghan Ma ◽  
Bingfang Wu ◽  
Nana Yan ◽  
Weiwei Zhu ◽  
Hongwei Zeng ◽  
...  

Cropland evapotranspiration (ET) is the major source of water consumption in agricultural systems. The precise management of agricultural ET helps optimize water resource usage in arid and semiarid regions and requires field-scale ET data support. Due to the combined limitations of satellite sensors and ET mechanisms, the current high-resolution ET models need further refinement to meet the demands of field-scale ET management. In this research, we proposed a new field-scale ET estimation method by developing an allocation factor to quantify field-level ET variations and allocate coarse ET to the field scale. By regarding the agricultural field as the object of the ET parcel, the allocation factor is calculated with combined high-resolution remote sensing indexes indicating the field-level ET variations under different crop growth and land-surface water conditions. The allocation ET results are validated at two ground observation stations and show improved accuracy compared with that of the original coarse data. This allocated ET model provides reasonable spatial results of field-level ET and is adequate for precise agricultural ET management. This allocation method provides new insight into calculating field-level ET from coarse ET datasets and meets the demands of wide application for controlling regional water consumption, supporting the ET management theory in addressing the impacts of water scarcity on social and economic developments.


2020 ◽  
Vol 12 (10) ◽  
pp. 175
Author(s):  
Xin Song ◽  
Lin Xia ◽  
Siyang Xu ◽  
Yue Wang

In this paper, the secure communication based on the full-duplex (FD) device-to-device (D2D) in cellular networks is proposed. For the proposed scheme, the novel model is established, in which a D2D user is played as a relay operating in FD mode to assist in the secure transmission of uplink information. Considering that the D2D user as a relay is untrusted, D2D link rate maximization is formulated with the constraint of secrecy rate, which ensures the security of uplink cellular networks. To cope with the optimization problem, the optimal power allocation factors of the cellular user (CU) and the D2D user are jointly optimized. Firstly, by using the monotonicity of the objective function, the optimal solution of the power allocation factor at the D2D user can be obtained. Subsequently, the closed-form expression of the optimal power allocation factor at the CU is derived and verified that the solution is the global minimum point. Simulation results verify that the proposed scheme has better output performance than the conventional scheme.


Author(s):  
Chao Li ◽  
Zihe Gao ◽  
Junjuan Xia ◽  
Dan Deng ◽  
Liseng Fan

AbstractThis paper investigates cache-enabled physical-layer secure communication in a no-orthogonal multiple access (NOMA) network with two users, where an intelligent unmanned aerial vehicle (UAV) is equipped with attack module which can perform as multiple attack modes. We present a power allocation strategy to enhance the transmission security. To this end, we propose an algorithm which can adaptively control the power allocation factor for the source station in NOMA network based on reinforcement learning. The interaction between the source station and UAV is regarded as a dynamic game. In the process of the game, the source station adjusts the power allocation factor appropriately according to the current work mode of the attack module on UAV. To maximize the benefit value, the source station keeps exploring the changing radio environment until the Nash equilibrium (NE) is reached. Moreover, the proof of the NE is given to verify the strategy we proposed is optimal. Simulation results prove the effectiveness of the strategy.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 819 ◽  
Author(s):  
Dinh-Thuan Do ◽  
Anh-Tu Le ◽  
and Byung Moo Lee

This study considers the outage and throughput performance of downlink in the secondary network of cognitive radio assisted non-orthogonal multiple access (NOMA) systems. Both orthogonal multiple access (OMA) mode and NOMA mode are investigated with respect to status of decoding operation of each user. Depending on the transmit signal-to-noise ratio (SNR) at the primary source and interference constraint from the primary network, the closed-form expressions of the outage probability for two users are obtained and compared in terms of performance. To obtain further insights, an asymptotic analysis of the outage probability in the high SNR regime is presented. Optimal throughput also provides insight in the computation of the power allocation factor. Furthermore, power allocation factor, target rates, and transmit SNR are evaluated to obtain reasonable outage performance. Monte Carlo simulations are conducted to confirm the analytical results.


Sign in / Sign up

Export Citation Format

Share Document