Optimal of shunt capacitor placement and size in Algerian distribution network using particle swarm optimization

Author(s):  
M. Mosbah ◽  
R. D. Mohammedi ◽  
S. Arif ◽  
A. Hellal
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2516
Author(s):  
Klemen Deželak ◽  
Peter Bracinik ◽  
Klemen Sredenšek ◽  
Sebastijan Seme

This paper deals with photovoltaic (PV) power plant modeling and its integration into the medium-voltage distribution network. Apart from solar cells, a simulation model includes a boost converter, voltage-oriented controller and LCL filter. The main emphasis is given to the comparison of two optimization methods—particle swarm optimization (PSO) and the Ziegler–Nichols (ZN) tuning method, approaches that are used for the parameters of Proportional-Integral (PI) controllers determination. A PI controller is commonly used because of its performance, but it is limited in its effectiveness if there is a change in the parameters of the system. In our case, the aforementioned change is caused by switching the feeders of the distribution network from an open-loop to a closed-loop arrangement. The simulation results have claimed the superiority of the PSO algorithm, while the classical ZN tuning method is acceptable in a limited area of operation.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Author(s):  
Yashar Mousavi ◽  
Mohammad Hosein Atazadegan ◽  
Arash Mousavi

Optimization of power distribution system reconfiguration is addressed as a multi-objective problem, which considers the system losses along with other objectives, and provides a viable solution for improvement of technical and economic aspects of distribution systems. A multi-objective chaotic fractional particle swarm optimization customized for power distribution network reconfiguration has been applied to reduce active power loss, improve the voltage profile, and increase the load balance in the system through deterministic and stochastic structures. In order to consider the prediction error of active and reactive loads in the network, it is assumed that the load behaviour follows the normal distribution function. An attempt is made to consider the load forecasting error on the network to reach the optimal point for the network in accordance with the reality. The efficiency and feasibility of the proposed method is studied through standard IEEE 33-bus and 69-bus systems. In comparison with other methods, the proposed method demonstrated superior performance by reducing the voltage deviation and power losses. It also achieved better load balancing.


Sign in / Sign up

Export Citation Format

Share Document