Solution of composite scattering from inhomogeneous object above conducting rough surface with a novel multi-hybrid FE-BI-KA method

Author(s):  
Jie Li ◽  
Li-Xin Guo ◽  
Qiong He
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Hong-jie He ◽  
Li-xin Guo ◽  
Wei Liu

An efficient iterative analytical-numerical method is proposed for three-dimensional (3D) electromagnetic scattering from an inhomogeneous object buried beneath a two-dimensional (2D) randomly dielectric rough surface. In the hybrid method, the electric and magnetic currents on the dielectric rough surface are obtained by current-based Kirchhoff approximation (KA), while the scattering from the inhomogeneous object is rigorously studied by finite element method (FEM) combined with the boundary integral method (BIM). The multiple interactions between the buried object and rough surface are taken into account by updating the electric and magnetic current densities on them. Several numerical simulations are considered to demonstrate the algorithm’s ability to deal with the scattering from the inhomogeneous target buried beneath a dielectric rough surface, and the effectiveness of our proposed method is also illustrated.


1997 ◽  
Vol 51 (2-3) ◽  
pp. 119-132
Author(s):  
V. F. Naumenko ◽  
Leonid Aleksandrovich Pazynin ◽  
A. S. Bryukhovetsky

2005 ◽  
Vol 64 (10) ◽  
pp. 819-831
Author(s):  
F.G. Bass ◽  
D. V. Mikhaylova ◽  
V. Prosentsov ◽  
L. Resnick

2016 ◽  
Vol 44 (3) ◽  
pp. 150-173 ◽  
Author(s):  
Mehran Motamedi ◽  
Saied Taheri ◽  
Corina Sandu

ABSTRACT For tire designers, rubber friction is a topic of pronounced practical importance. Thus, development of a rubber–road contact model is of great interest. In this research, to predict the effectiveness of the tread compound in a tire as it interacts with the pavement, the physics-based multiscale rubber-friction theories developed by B. Persson and M. Klüppel were studied. The strengths of each method were identified and incorporated into a consolidated model that is more comprehensive and proficient than any single, existing, physics-based approach. In the present work, the friction coefficient was estimated for a summer tire tread compound sliding on sandpaper. The inputs to the model were the fractal properties of the rough surface and the dynamic viscoelastic modulus of rubber. The sandpaper-surface profile was measured accurately using an optical profilometer. Two-dimensional parameterization was performed using one-dimensional profile measurements. The tire tread compound was characterized via dynamic mechanical analysis. To validate the friction model, a laboratory-based, rubber-friction test that could measure the friction between a rubber sample and any arbitrary rough surface was designed and built. The apparatus consisted of a turntable, which can have the surface characteristics of choice, and a rubber wheel in contact with the turntable. The wheel speed, as well as the turntable speed, could be controlled precisely to generate the arbitrary values of longitudinal slip at which the dynamic coefficient of friction was measured. The correlation between the simulation and the experimental results was investigated.


PIERS Online ◽  
2007 ◽  
Vol 3 (5) ◽  
pp. 718-722 ◽  
Author(s):  
Wenzhe Yan ◽  
L. X. Xu ◽  
Yang Du ◽  
F. Sheng ◽  
Z. N. Li ◽  
...  

PIERS Online ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 187-191 ◽  
Author(s):  
Yang Du ◽  
Tao Xu ◽  
Yingliang Luo ◽  
J. A. Kong

Sign in / Sign up

Export Citation Format

Share Document