Image edge detection method based on the direction feature of fuzzy entropy

Author(s):  
Chun He ◽  
Jun Lu ◽  
Junwei Han
2011 ◽  
Vol 268-270 ◽  
pp. 1234-1238
Author(s):  
Xian Qing Ling ◽  
Jun Lu ◽  
Lei Wang

To improve the ability of the fuzzy edge detection and anti-noise performance, the paper proposes a new weighted direction fuzzy entropy image edge detection method. The proposed method converts the feature space of image gray to the fuzzy feature space, and then extracts the weighted information measure of the direction structural in the fuzzy entropy feature space. Finally, the proposed method determines the edge pixel by an adaptive threshold after non-maxima suppression. The experiment demonstrates that the proposed method can extract the image edges effectively by means of the fuzzy edge detection.


2014 ◽  
Vol 539 ◽  
pp. 141-145
Author(s):  
Shui Li Zhang

This paper presents new theorems Stevens edge detection method based on cognitive psychology on. Firstly, based on the number of the image is decomposed into high-frequency and low-frequency information, and the high-frequency information extracted by subtracting the maximum number of images to the image after the filter, then the amount of high frequency information into psychological cognitive psychology based on Stevenss theorem. The algorithm suppression refined edge after the non-minimum, applications Pillar K-means algorithm to extract image edge. Experimental results show that: the brightness of the image is converted to the amount of psychological edge can better unify under different brightness values.


2014 ◽  
Vol 511-512 ◽  
pp. 550-553 ◽  
Author(s):  
Jian Yong Liang

Edge detection is an old and hot topic in image processing, pattern recognition and computer vision. Numerous edge detection approaches have been proposed to gray images. It is difficult to extend these approaches to color image edge detection. A novel edge detection method based on mathematical morphology for color images is proposed in this paper. The proposed approach firstly compute vector gradient based on morphological gradient operators, and then compute the optimal gradient according to structure elements with different size. Finally, we use a threshold to binary the gradient images and then obtain the edge images. Experimental results show that the proposed approach has advantages of suppressing noise and preserving edge details and it is not sensitive to noise pixel. The finally edge images via the proposed method have high PSNR and NC compared with the traditional approaches.


Sign in / Sign up

Export Citation Format

Share Document