Approximative Matrix Inversion Based Linear Precoding for Massive MIMO Systems

Author(s):  
Xiaowei Qiang ◽  
Yang Liu ◽  
Qingxia Feng ◽  
Jinhong Liu ◽  
Xueli Ren ◽  
...  
2019 ◽  
Vol 8 (2S11) ◽  
pp. 2834-2840

This paper deals with various low complexity algorithms for higher order matrix inversion involved in massive MIMO system precoder design. The performance of massive MIMO systems is optimized by the process of precoding which is divided into linear and nonlinear. Nonlinear precoding techniques are most complex precoding techniques irrespective of its performance. Hence, linear precoding is generally preferred in which the complexity is mainly contributed by matrix inversion algorithm. To solve this issue, Krylov subspace algorithm such as Conjugate Gradient (CG) was considered to be the best choice of replacement for exact matrix inversions. But CG enforces a condition that the matrix needs to be Symmetric Positive Definite (SPD). If the matrix to be inverted is asymmetric then CG fails to converge. Hence in this paper, a novel approach for the low complexity inversion of asymmetric matrices is proposed by applying two different versions of CG algorithms- Conjugate Gradient Squared (CGS) and Bi-conjugate Gradient (Bi-CG). The convergence behavior and BER performance of these two algorithms are compared with the existing CG algorithm. The results show that these two algorithms outperform CG in terms of convergence speed and relative residue.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Lin Shao ◽  
Yunxiao Zu

Due to large numbers of antennas and users, matrix inversion is complicated in linear precoding techniques for massive MIMO systems. Several approximated matrix inversion methods, including the Neumann series, have been proposed to reduce the complexity. However, the Neumann series does not converge fast enough. In this paper, to speed up convergence, a new joint Newton iteration and Neumann series method is proposed, with the first iteration result of Newton iteration method being employed to reconstruct the Neumann series. Then, a high probability convergence condition is established, which can offer useful guidelines for practical massive MIMO systems. Finally, simulation examples are given to demonstrate that the new joint Newton iteration and Neumann series method has a faster convergence rate compared to the previous Neumann series, with almost no increase in complexity when the iteration number is greater than or equal to 2.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Van-Khoi Dinh ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Chi-Hieu Ta

In this paper, a low-complexity linear precoding algorithm based on the principal component analysis technique in combination with the conventional linear precoders, called Principal Component Analysis Linear Precoder (PCA-LP), is proposed for massive MIMO systems. The proposed precoder consists of two components: the first one minimizes the interferences among neighboring users and the second one improves the system performance by utilizing the Principal Component Analysis (PCA) technique. Numerical and simulation results show that the proposed precoder has remarkably lower computational complexity than its low-complexity lattice reduction-aided regularized block diagonalization using zero forcing precoding (LC-RBD-LR-ZF) and lower computational complexity than the PCA-aided Minimum Mean Square Error combination with Block Diagonalization (PCA-MMSE-BD) counterparts while its bit error rate (BER) performance is comparable to those of the LC-RBD-LR-ZF and PCA-MMSE-BD ones.


2016 ◽  
Vol 15 (3) ◽  
pp. 2245-2261 ◽  
Author(s):  
Jun Zhu ◽  
Robert Schober ◽  
Vijay K. Bhargava

2019 ◽  
Vol 68 (7) ◽  
pp. 6272-6285 ◽  
Author(s):  
Chuan Zhang ◽  
Xiao Liang ◽  
Zhizhen Wu ◽  
Feng Wang ◽  
Shunqing Zhang ◽  
...  

2020 ◽  
Vol 107 ◽  
pp. 102864
Author(s):  
Yang Liu ◽  
Yuting Li ◽  
Xiaodong Cheng ◽  
Yinbo Lian ◽  
Yongjun Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document