scholarly journals Profit maximization for viral marketing in Online Social Networks

Author(s):  
Jing Tang ◽  
Xueyan Tang ◽  
Junsong Yuan
Author(s):  
Yifeng Zhang ◽  
Xiaoqing Li ◽  
Te-Wei Wang

Online social networks (OSNs) are quickly becoming a key component of the Internet. With their widespread acceptance among the general public and the tremendous amount time that users spend on them, OSNs provide great potentials for marketing, especially viral marketing, in which marketing messages are spread among consumers via the word-of-mouth process. A critical task in viral marketing is influencer identification, i.e. finding a group of consumers as the initial receivers of a marketing message. Using agent-based modeling, this paper examines the effectiveness of tie strength as a criterion for influencer identification on OSNs. Results show that identifying influencers by the number of strong connections that a user has is superior to doing so by the total number of connections when the strength of strong connections is relatively high compared to that of weak connections or there is a relatively high percentage of strong connections between users. Implications of the results are discussed.


Author(s):  
Bernardo Huberman ◽  
Daniel M Romero ◽  
Fang Wu

Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing, among others. But the linked structures of social networks do not reveal actual interactions among people. Scarcity of attention and the daily rythms of life and work makes people default to interacting with those few that matter and that reciprocate their attention. A study of social interactions within Twitter reveals that the driver of usage is a sparse and hidden network of connections underlying the “declared” set of friends and followers.


2015 ◽  
Vol 29 (13) ◽  
pp. 1550063 ◽  
Author(s):  
Pei Li ◽  
Yini Zhang ◽  
Fengcai Qiao ◽  
Hui Wang

Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.


2018 ◽  
Vol 115 (29) ◽  
pp. 7468-7472 ◽  
Author(s):  
Yanqing Hu ◽  
Shenggong Ji ◽  
Yuliang Jin ◽  
Ling Feng ◽  
H. Eugene Stanley ◽  
...  

Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on a social network is a global process, it is commonly believed that measuring the influence of nodes inevitably requires the knowledge of the entire network. Using percolation theory, we show that the spreading process displays a nucleation behavior: Once a piece of information spreads from the seeds to more than a small characteristic number of nodes, it reaches a point of no return and will quickly reach the percolation cluster, regardless of the entire network structure; otherwise the spreading will be contained locally. Thus, we find that, without the knowledge of the entire network, any node’s global influence can be accurately measured using this characteristic number, which is independent of the network size. This motivates an efficient algorithm with constant time complexity on the long-standing problem of best seed spreaders selection, with performance remarkably close to the true optimum.


Sign in / Sign up

Export Citation Format

Share Document