Optimizing Design of Wearable Energy Generator for Body Motion based Energy Harvesting

Author(s):  
Abhay K Anand ◽  
Aditya Asok ◽  
Arpith P ◽  
Sandeep S ◽  
Gowri Nandana ◽  
...  
2018 ◽  
Vol 51 (6) ◽  
pp. 36-41 ◽  
Author(s):  
Radka Pavelková ◽  
David Vala ◽  
Kateřina Gecová

Author(s):  
Edwar Romero ◽  
Gerardo Carbajal ◽  
Robert Warrington ◽  
Michael Neuman

This study presents a quantitative analysis of experimental data for extracting energy from human body motion and its possibility of powering portable electronic devices, such as consumer electronics or biomedical monitoring sensors. Since portable electronic devices are typically limited by the size and lifespan of batteries, energy harvesting shows potential as alternative for extending battery life. The acceleration was collected experimentally from 10 subjects while walking and running at different velocities on a treadmill. The acceleration results were studied and a figure of merit consisting of the acceleration-squared-to-frequency was found to determine, in addition to the quality factor, as the important factors for optimal energy harvesting. It was determined that from average walking an energy harvester can produce a power output density greater than 1mW/cm3.


2015 ◽  
Vol 772 ◽  
pp. 125-129
Author(s):  
Cristian Necula ◽  
C. Daniel Comeagă ◽  
Octavian Donţu

In future, demand on portable electronic devices will create the requirements of enduring recharged sources of power. A non-environmental friendly conventional battery with limited lifetimes has no longer feasible option. One of the mostly used solution is the piezoelectric composite structure with sensing and also actuating capabilities, mainly as a MEMS device. The optimum between actuating and energy harvesting functions is difficult to obtain. The article is presenting a study regarding the posibility to optimize both functions, performed using an analytical model and also by simulation using a FEA model.


2018 ◽  
Vol 30 (8) ◽  
pp. 1705195 ◽  
Author(s):  
Ruiyuan Liu ◽  
Xiao Kuang ◽  
Jianan Deng ◽  
Yi-Cheng Wang ◽  
Aurelia C. Wang ◽  
...  

2019 ◽  
Vol 14 (11) ◽  
pp. 1572-1581 ◽  
Author(s):  
Shamsuddin ◽  
Saeed Ahmed Khan ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Palwasha Jalalzai

A self-powered mechanical energy harvesting system consists of the storage system and the energy scavenging TENG. Triboelectric nanogenerator includes a system which integrates a self-powered sensor and the power generator, this triboelectric nanogenerator has the potential to be used in a modern wearable electronic TENG. It has been reported that triboelectric nanogenerator working under complicated deformation like bending, stretching and twisting brings the main problem. Here we have fabricated the shape adaptive Triboelectric nanogenerator which solves all the deformation issues and can harvest the mechanical energy through human body motion in any deformation, the fabricated TENG is a self-powered sensor which can sense the different human activities and can monitor the health issues, the TENG stores the energy directly to the capacitor for powering the wearable electronics. A human skin based triboelectric nanogenerator was designed from the silicon rubber and the copper acetate-II used as the electrode, which makes the TENG flexible self-powered sensor, it can be stretched up to 200%. The stretchable nature and the flexibility of the human skin based silicon rubber triboelectric nanogenerator makes it the promising flexible and shape-adaptive energy harvesting TENG. The fabricated TENG generated the open circuit voltage 70 V and the short circuit current 11 μA and delivered the power 55 μW at the load of 80 MΩ. 42 LEDs were powered directly from the TENG. The fabricated TENG has human skin tactile property which does not harm the human skin while using it multiple times. The layer of copper acetate is completely coated with silicone rubber. The fabricated TENG is flexible, biocompatible and cost effective.


Sensors ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 524 ◽  
Author(s):  
Antonino Proto ◽  
Marek Penhaker ◽  
Daniele Bibbo ◽  
David Vala ◽  
Silvia Conforto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document