Urban-Areas based Mobility Model for Wireless Network Simulations

Author(s):  
Chih-Ping Chu ◽  
Hua-Wen Tsai
Author(s):  
Alexander P Pelov ◽  
Thomas Noel

This paper presents the generic layered architecture for mobility models (LEMMA), which can be used to construct a wide variety of mobility models, including the majority of models used in wireless network simulations. The fundamental components of the architecture are described and analyzed, in addition to its benefits. One of the core principles stipulates that each mobility model is divided in five distinct layers that communicate via interfaces. This allows their easy replacement and recombination, which we support by reviewing 19 layers that can form 480 different mobility models. Some of the advanced features provided by the architecture are also discussed, such as layer aggregation, and creation of hybrid and group mobility models. Finally, some of the numerous existing studies of the different layers are presented.


2021 ◽  
Author(s):  
Dominik Husarek ◽  
Simon Paulus ◽  
Michael Metzger ◽  
Vjekoslav Salapic ◽  
Stefan Niessen

Since E-Mobility is on the rise worldwide, large Charging Infrastructure (CI) networks are required to satisfy the upcoming Charging Demand (CD). Understanding this CD with its spatial and temporal uncertainties is important for grid operators to quantify the grid impact of Electric Vehicle integration and for Charging Station (CS) operators to assess long-term CI investments. Hence, we introduce an Agent-based E-Mobility Model assessing regional CI systems with their multi-directional interactions between CSs and vehicles. A Global Sensitivity Analysis (GSA) is applied to quantify the impact of 11 technical levers on 17 relevant charging system outputs. The GSA evaluates the E-Mobility integration in terms of grid impact, economic viability of CSs and Service Quality of the deployed Charging Infrastructure (SQCI). Based on this impact assessment we derive general guidelines for E-Mobility integration into regional systems. We found, inter alia, that CI policies should aim at allocating CSs across different types of locations to utilize cross-locational effects such as CSs at public locations affecting the charging peak in residential areas by up to 18%. Additionally, while improving the highway charging network is an effective lever to increase the SQCI in urban areas, public charging is an even stronger lever in rural areas.


Author(s):  
Tsehay Admassu Assegie ◽  
Tamilarasi Suresh ◽  
R. Subhashni ◽  
Deepika M

<span>Wireless mesh network (WMN) is a new trend in wireless communication promising greater flexibility, reliability, and performance over traditional wireless local area network (WLAN). Test bed analysis and emulation plays an essential role in valuation of software defined wireless network and node mobility is the prominent feature of next generation software defined wireless network. In this study, the mobility models employed for moving mobile stations in software defined wireless network are explored. Moreover, the importance of mobility model within software defined wireless mesh network for enhancing the performance through handover-based load balancing is analyzed. The mobility models for the next generation software defined wireless network are explored. Furthermore, we have presented the mobility models in the mininet-Wi-Fi test bed, and evaluated the performance of Gauss Marko’s mobility model.</span>


Sign in / Sign up

Export Citation Format

Share Document