Artificial neural networks for autonomous robot control: reflective navigation and adaptive sensor calibration

Author(s):  
A. Loffler ◽  
J. Klahold ◽  
U. Ruckert
2008 ◽  
Vol 18 (05) ◽  
pp. 389-403 ◽  
Author(s):  
THOMAS D. JORGENSEN ◽  
BARRY P. HAYNES ◽  
CHARLOTTE C. F. NORLUND

This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ayse Gokcen Kavaz ◽  
Burak Barutcu

This paper proposes a method for sensor validation and fault detection in wind turbines. Ensuring validity of sensor measurements is a significant part in overall condition monitoring as sensor faults lead to incorrect results in monitoring a system’s state of health. Although identifying abrupt failures in sensors is relatively straightforward, calibration drifts are more difficult to detect. Therefore, a detection and isolation technique for sensor calibration drifts on the purpose of measurement validation was developed. Temperature sensor measurements from the Supervisory Control and Data Acquisition system of a wind turbine were used for this aim. Low output rate of the measurements and nonlinear characteristics of the system drive the necessity to design an advanced fault detection algorithm. Artificial neural networks were chosen for this purpose considering their high performance in nonlinear environments. The results demonstrate that the proposed method can effectively detect existence of calibration drift and isolate the exact sensor with faulty behaviour.


Sign in / Sign up

Export Citation Format

Share Document