Effect of progressive visual error amplification on human motor adaptation

Author(s):  
C. Sung ◽  
M. K. O'Malley
NeuroImage ◽  
2012 ◽  
Vol 59 (1) ◽  
pp. 582-600 ◽  
Author(s):  
Robert A. Scheidt ◽  
Janice L. Zimbelman ◽  
Nicole M.G. Salowitz ◽  
Aaron J. Suminski ◽  
Kristine M. Mosier ◽  
...  

Author(s):  
Seung-Yeon Kim ◽  
Jae-Woon Kwon ◽  
Jin-Min Kim ◽  
Frank Chong-Woo Park ◽  
Sang-Hoon Yeo

Primitive-based models of motor learning suggest that adaptation occurs by tuning the responses of motor primitives. Based on this idea, we consider motor learning as an information encoding procedure, that is, a procedure of encoding a motor skill into primitives. The capacity of encoding is determined by the number of recruited primitives, which depends on how many primitives are "visited" by the movement, and this leads to a rather counter-intuitive prediction that faster movement, where a larger number of motor primitives are involved, allows learning more complicated motor skills. Here we provide a set of experimental results that support this hypothesis. First, we show that learning occurs only with movement, i.e., only with non-zero encoding capacity. When participants were asked to counteract a rotating force applied to a robotic handle, they were unable to do so when maintaining a static posture but were able to adapt when making small circular movements. Our second experiment further investigated how adaptation is affected by movement speed. When adapting to a simple (low-information-content) force field, fast (high-capacity) movement did not have an advantage over slow (low-capacity) movement. However, for a complex (high-information-content) force field, the fast movement showed a significant advantage over slow movement. Our final experiment confirmed that the observed benefit of high-speed movement is only weakly affected by mechanical factors. Taken together, our results suggest that the encoding capacity is a genuine limiting factor of human motor adaptation.


eNeuro ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. ENEURO.0149-19.2019 ◽  
Author(s):  
Frédéric Crevecoeur ◽  
Jean-Louis Thonnard ◽  
Philippe Lefèvre

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jan Babič ◽  
Erhan Oztop ◽  
Mitsuo Kawato

2021 ◽  
Author(s):  
Caroline R Nettekoven ◽  
Leah Mitchell ◽  
William T Clarke ◽  
Uzay Emir ◽  
Heidi Johansen-Berg ◽  
...  

Motor adaptation is crucial for performing accurate movements in a changing environment and relies on the cerebellum. Although cerebellar involvement has been well characterized, the neurochemical changes in the cerebellum that underpin human motor adaptation remain unknown. We used a novel Magnetic Resonance Spectroscopic Imaging (MRSI) technique to measure changes in the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the human cerebellum during visuomotor adaptation. Participants used their right hand to adapt to a rotated cursor in the scanner, compared with a control task requiring no adaptation. We were able to spatially resolve adaptation-driven GABA changes at the cerebellar nuclei and in the cerebellar cortex in the left and the right cerebellar hemisphere independently and found that simple movement of the right hand increases GABA in the right cerebellar nuclei and decreases GABA in the left. When isolating adaptation-driven GABA changes, we found an increase in GABA in the left cerebellar nuclei and a decrease in GABA in the right cerebellar nuclei during adaptation. Early adaptation-driven GABA change in the right cerebellar nuclei correlated with adaptation performance: Participants showing greater GABA decrease adapted better, suggesting that this early GABA change is behaviourally relevant. Early GABA change also correlated with functional connectivity change in a cerebellar network: Participants showing a greater decrease in GABA also showed greater strength increase in cerebellar network connectivity. These results were specific to GABA, specific to adaptation and specific to the cerebellar network. This study provides the first evidence for plastic changes in cerebellar neurochemistry during a motor adaptation task. Characterising these naturally occurring neurochemical changes may provide a basis for developing therapeutic interventions to facilitate neurochemical changes in the cerebellum that can improve human motor adaptation.


1998 ◽  
Vol 80 (5) ◽  
pp. 2405-2416 ◽  
Author(s):  
Josh Wallman ◽  
Albert F. Fuchs

Wallman, Josh and Albert F. Fuchs. Saccadic gain modification: visual error drives motor adaptation. J. Neurophysiol. 80: 2405–2416, 1998. The brain maintains the accuracy of saccadic eye movements by adjusting saccadic amplitude relative to the target distance (i.e., saccade gain) on the basis of the performance of recent saccades. If an experimenter surreptitiously moves the target backward during each saccade, thereby causing the eyes to land beyond their targets, saccades undergo a gradual gain reduction. The error signal driving this conventional saccadic gain adaptation could be either visual (the postsaccadic distance of the target from the fovea) or motoric (the direction and size of the corrective saccade that brings the eye onto the back-stepped target). Similarly, the adaptation itself might be a motor adjustment (change in the size of saccade for a given perceived target distance) or a visual remapping (change in the perceived target distance). We studied these possibilities in experiments both with rhesus macaques and with humans. To test whether the error signal is motoric, we used a paradigm devised by Heiner Deubel. The Deubel paradigm differed from the conventional adaptation paradigm in that the backward step that occurred during the saccade was brief, and the target then returned to its original displaced location. This ploy replaced most of the usual backward corrective saccades with forward ones. Nevertheless, saccadic gain gradually decreased over hundreds of trials. Therefore, we conclude that the direction of saccadic gain adaptation is not determined by the direction of corrective saccades. To test whether gain adaptation is a manifestation of a static visual remapping, we decreased the gain of 10° horizontal saccades by conventional adaptation and then tested the gain to targets appearing at retinal locations unused during adaptation. To make the target appear in such “virgin territory,” we had it jump first vertically and then 10° horizontally; both jumps were completed and the target spot extinguished before saccades were made sequentially to the remembered target locations. Conventional adaptation decreased the gain of the second, horizontal saccade even though the target was in a nonadapted retinal location. In contrast, the horizontal component of oblique saccades made directly to the same virgin location showed much less gain decrease, suggesting that the adaptation is specific to saccade direction rather than to target location. Thus visual remapping cannot account for the entire reduction of saccadic gain. We conclude that saccadic gain adaptation involves an error signal that is primarily visual, not motor, but that the adaptation itself is primarily motor, not visual.


Sign in / Sign up

Export Citation Format

Share Document