error amplification
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Yi-Ching Chen ◽  
Yi-Ying Tsai ◽  
Gwo-Ching Chang ◽  
Ing-Shiou Hwang

Abstract Background Error amplification (EA), virtually magnify task errors in visual feedback, is a potential neurocognitive approach to facilitate motor performance. With regional activities and inter-regional connectivity of electroencephalography (EEG), this study investigated underlying cortical mechanisms associated with improvement of postural balance using EA. Methods Eighteen healthy young participants maintained postural stability on a stabilometer, guided by two visual feedbacks (error amplification (EA) vs. real error (RE)), while stabilometer plate movement and scalp EEG were recorded. Plate dynamics, including root mean square (RMS), sample entropy (SampEn), and mean frequency (MF) were used to characterize behavioral strategies. Regional cortical activity and inter-regional connectivity of EEG sub-bands were characterized to infer neural control with relative power and phase-lag index (PLI), respectively. Results In contrast to RE, EA magnified the errors in the visual feedback to twice its size during stabilometer stance. The results showed that EA led to smaller RMS of postural fluctuations with greater SampEn and MF than RE did. Compared with RE, EA altered cortical organizations with greater regional powers in the mid-frontal cluster (theta, 4–7 Hz), occipital cluster (alpha, 8–12 Hz), and left temporal cluster (beta, 13–35 Hz). In terms of the phase-lag index of EEG between electrode pairs, EA significantly reduced long-range prefrontal-parietal and prefrontal-occipital connectivity of the alpha/beta bands, and the right tempo-parietal connectivity of the theta/alpha bands. Alternatively, EA augmented the fronto-centro-parietal connectivity of the theta/alpha bands, along with the right temporo-frontal and temporo-parietal connectivity of the beta band. Conclusion EA alters postural strategies to improve stance stability on a stabilometer with visual feedback, attributable to enhanced error processing and attentional release for target localization. This study provides supporting neural correlates for the use of virtual reality with EA during balance training.


2020 ◽  
Vol 91 ◽  
pp. 106816 ◽  
Author(s):  
Lorenzo Malagutti ◽  
Francesco Mollica ◽  
Valentina Mazzanti

2020 ◽  
Vol 90 (327) ◽  
pp. 267-302 ◽  
Author(s):  
Andrey Akinshin ◽  
Gil Goldman ◽  
Yosef Yomdin
Keyword(s):  

2020 ◽  
Vol 39 (9) ◽  
pp. 1138-1154
Author(s):  
Kathleen Fitzsimons ◽  
Aleksandra Kalinowska ◽  
Julius P Dewald ◽  
Todd D Murphey

Despite the fact that robotic platforms can provide both consistent practice and objective assessments of users over the course of their training, there are relatively few instances where physical human–robot interaction has been significantly more effective than unassisted practice or human-mediated training. This article describes a hybrid shared control robot, which enhances task learning through kinesthetic feedback. The assistance assesses user actions using a task-specific evaluation criterion and selectively accepts or rejects them at each time instant. Through two human subject studies (total [Formula: see text]), we show that this hybrid approach of switching between full transparency and full rejection of user inputs leads to increased skill acquisition and short-term retention compared with unassisted practice. Moreover, we show that the shared control paradigm exhibits features previously shown to promote successful training. It avoids user passivity by only rejecting user actions and allowing failure at the task. It improves performance during assistance, providing meaningful task-specific feedback. It is sensitive to initial skill of the user and behaves as an “assist-as-needed” control scheme, adapting its engagement in real time based on the performance and needs of the user. Unlike other successful algorithms, it does not require explicit modulation of the level of impedance or error amplification during training and it is permissive to a range of strategies because of its evaluation criterion. We demonstrate that the proposed hybrid shared control paradigm with a task-based minimal intervention criterion significantly enhances task-specific training.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Asif Khan ◽  
Jian Ping Li ◽  
Amin ul Haq ◽  
Shah Nazir ◽  
Naeem Ahmad ◽  
...  

The most common use of robots is to effectively decrease the human’s effort with desirable output. In the human-robot interaction, it is essential for both parties to predict subsequent actions based on their present actions so as to well complete the cooperative work. A lot of effort has been devoted in order to attain cooperative work between human and robot precisely. In case of decision making , it is observed from the previous studies that short-term or midterm forecasting have long time horizon to adjust and react. To address this problem, we suggested a new vision-based interaction model. The suggested model reduces the error amplification problem by applying the prior inputs through their features, which are repossessed by a deep belief network (DBN) though Boltzmann machine (BM) mechanism. Additionally, we present a mechanism to decide the possible outcome (accept or reject). The said mechanism evaluates the model on several datasets. Hence, the systems would be able to capture the related information using the motion of the objects. And it updates this information for verification, tracking, acquisition, and extractions of images in order to adapt the situation. Furthermore, we have suggested an intelligent purifier filter (IPF) and learning algorithm based on vision theories in order to make the proposed approach stronger. Experiments show the higher performance of the proposed model compared to the state-of-the-art methods.


Author(s):  
Zenglei Wang ◽  
Yuxiang Yan ◽  
Dechuan Han ◽  
Xiaoliang Bai ◽  
Shusheng Zhang

In the manual assembly of the blind area, the worker's line of sight is blocked, and the real-time state of the parts to be assembled cannot be seen, which has a great impact on the efficiency and accuracy of the assembly. Aiming at this problem, a blind zone assembly method based on machine vision and augmented reality(AR) is proposed. Firstly, the ellipse is used as the marker point. The object to be assembled in the blind area is indirectly tracked by the detection and positioning of the ellipse, and the AR visualization guide assembly is then performed by projection and the assembly is precisely guided using the principle of local error amplification. Finally, the blind zone assembly experiment based on machine vision and augmented reality is designed to verify the effectiveness of the method. The experimental results show that this method can significantly improve the efficiency of assembly work in blind areas and can effectively reduce the assembly error rate.


2019 ◽  
Vol 147 (5) ◽  
pp. 1713-1731 ◽  
Author(s):  
Marlene Baumgart ◽  
Paolo Ghinassi ◽  
Volkmar Wirth ◽  
Tobias Selz ◽  
George C. Craig ◽  
...  

Abstract Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global, real-case ensemble simulations, in which the only difference between the ensemble members lies in the random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the relative importance of individual processes to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h, error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in general. However, a novel interpretation of the governing processes is provided. The insight obtained into the dynamics of upscale error growth may help to design representations of uncertainty in operational forecast models and to identify atmospheric conditions that are intrinsically prone to large error amplification.


Sign in / Sign up

Export Citation Format

Share Document