scholarly journals Inducing human motor adaptation without explicit error feedback: A motor cost approach

Author(s):  
Yangmengfei Xu ◽  
Vincent Crocher ◽  
Justin Fong ◽  
Ying Tan ◽  
Denny Oetomo
NeuroImage ◽  
2012 ◽  
Vol 59 (1) ◽  
pp. 582-600 ◽  
Author(s):  
Robert A. Scheidt ◽  
Janice L. Zimbelman ◽  
Nicole M.G. Salowitz ◽  
Aaron J. Suminski ◽  
Kristine M. Mosier ◽  
...  

Author(s):  
Seung-Yeon Kim ◽  
Jae-Woon Kwon ◽  
Jin-Min Kim ◽  
Frank Chong-Woo Park ◽  
Sang-Hoon Yeo

Primitive-based models of motor learning suggest that adaptation occurs by tuning the responses of motor primitives. Based on this idea, we consider motor learning as an information encoding procedure, that is, a procedure of encoding a motor skill into primitives. The capacity of encoding is determined by the number of recruited primitives, which depends on how many primitives are "visited" by the movement, and this leads to a rather counter-intuitive prediction that faster movement, where a larger number of motor primitives are involved, allows learning more complicated motor skills. Here we provide a set of experimental results that support this hypothesis. First, we show that learning occurs only with movement, i.e., only with non-zero encoding capacity. When participants were asked to counteract a rotating force applied to a robotic handle, they were unable to do so when maintaining a static posture but were able to adapt when making small circular movements. Our second experiment further investigated how adaptation is affected by movement speed. When adapting to a simple (low-information-content) force field, fast (high-capacity) movement did not have an advantage over slow (low-capacity) movement. However, for a complex (high-information-content) force field, the fast movement showed a significant advantage over slow movement. Our final experiment confirmed that the observed benefit of high-speed movement is only weakly affected by mechanical factors. Taken together, our results suggest that the encoding capacity is a genuine limiting factor of human motor adaptation.


eNeuro ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. ENEURO.0149-19.2019 ◽  
Author(s):  
Frédéric Crevecoeur ◽  
Jean-Louis Thonnard ◽  
Philippe Lefèvre

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jan Babič ◽  
Erhan Oztop ◽  
Mitsuo Kawato

2021 ◽  
Author(s):  
Caroline R Nettekoven ◽  
Leah Mitchell ◽  
William T Clarke ◽  
Uzay Emir ◽  
Heidi Johansen-Berg ◽  
...  

Motor adaptation is crucial for performing accurate movements in a changing environment and relies on the cerebellum. Although cerebellar involvement has been well characterized, the neurochemical changes in the cerebellum that underpin human motor adaptation remain unknown. We used a novel Magnetic Resonance Spectroscopic Imaging (MRSI) technique to measure changes in the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the human cerebellum during visuomotor adaptation. Participants used their right hand to adapt to a rotated cursor in the scanner, compared with a control task requiring no adaptation. We were able to spatially resolve adaptation-driven GABA changes at the cerebellar nuclei and in the cerebellar cortex in the left and the right cerebellar hemisphere independently and found that simple movement of the right hand increases GABA in the right cerebellar nuclei and decreases GABA in the left. When isolating adaptation-driven GABA changes, we found an increase in GABA in the left cerebellar nuclei and a decrease in GABA in the right cerebellar nuclei during adaptation. Early adaptation-driven GABA change in the right cerebellar nuclei correlated with adaptation performance: Participants showing greater GABA decrease adapted better, suggesting that this early GABA change is behaviourally relevant. Early GABA change also correlated with functional connectivity change in a cerebellar network: Participants showing a greater decrease in GABA also showed greater strength increase in cerebellar network connectivity. These results were specific to GABA, specific to adaptation and specific to the cerebellar network. This study provides the first evidence for plastic changes in cerebellar neurochemistry during a motor adaptation task. Characterising these naturally occurring neurochemical changes may provide a basis for developing therapeutic interventions to facilitate neurochemical changes in the cerebellum that can improve human motor adaptation.


2019 ◽  
Vol 121 (4) ◽  
pp. 1561-1574 ◽  
Author(s):  
Dimitrios J. Palidis ◽  
Joshua G. A. Cashaback ◽  
Paul L. Gribble

At least two distinct processes have been identified by which motor commands are adapted according to movement-related feedback: reward-based learning and sensory error-based learning. In sensory error-based learning, mappings between sensory targets and motor commands are recalibrated according to sensory error feedback. In reward-based learning, motor commands are associated with subjective value, such that successful actions are reinforced. We designed two tasks to isolate reward- and sensory error-based motor adaptation, and we used electroencephalography in humans to identify and dissociate the neural correlates of reward and sensory error feedback processing. We designed a visuomotor rotation task to isolate sensory error-based learning that was induced by altered visual feedback of hand position. In a reward learning task, we isolated reward-based learning induced by binary reward feedback that was decoupled from the visual target. A fronto-central event-related potential called the feedback-related negativity (FRN) was elicited specifically by binary reward feedback but not sensory error feedback. A more posterior component called the P300 was evoked by feedback in both tasks. In the visuomotor rotation task, P300 amplitude was increased by sensory error induced by perturbed visual feedback and was correlated with learning rate. In the reward learning task, P300 amplitude was increased by reward relative to nonreward and by surprise regardless of feedback valence. We propose that during motor adaptation the FRN specifically reflects a reward-based learning signal whereas the P300 reflects feedback processing that is related to adaptation more generally. NEW & NOTEWORTHY We studied the event-related potentials evoked by feedback stimuli during motor adaptation tasks that isolate reward- and sensory error-based learning mechanisms. We found that the feedback-related negativity was specifically elicited by binary reward feedback, whereas the P300 was observed in both tasks. These results reveal neural processes associated with different learning mechanisms and elucidate which classes of errors, from a computational standpoint, elicit the feedback-related negativity and P300.


Sign in / Sign up

Export Citation Format

Share Document