An active scheduler: autonomous concurrency control of parallel programs in a distributed environment

Author(s):  
S. Fujita ◽  
Lei Deng ◽  
S. Tagashira
Author(s):  
Rup Kamal ◽  
Ryan Saptarshi Ray ◽  
Utpal Kumar Ray ◽  
Parama Bhaumik

The past few years have marked the start of a historic transition from sequential to parallel computation. The necessity to write parallel programs is increasing as systems are getting more complex while processor speed increases are slowing down. Current parallel programming uses low-level programming constructs like threads and explicit synchronization using locks to coordinate thread execution. Parallel programs written with these constructs are difficult to design, program and debug. Also locks have many drawbacks which make them a suboptimal solution. One such drawback is that locks should be only used to enclose the critical section of the parallel-processing code. If locks are used to enclose the entire code then the performance of the code drastically decreases. Software Transactional Memory (STM) is a promising new approach to programming shared-memory parallel processors. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program. If STM is used to enclose the entire code then the performance of the code is the same as that of the code in which STM is used to enclose the critical section only and is far better than code in which locks have been used to enclose the entire code. So STM is easier to use than locks as critical section does not need to be identified in case of STM. This paper shows the concept of writing code using Software Transactional Memory (STM) and the performance comparison of codes using locks with those using STM. It also shows why the use of STM in parallel-processing code is better than the use of locks.


In distributed environment, data availability and concurrency control both are challenging issues. Data availability can be maintained by replicating data at several locations or sites that will improve the availability but at the same time it is very challenging task to maintain the consistency of it. In order to improve the performance of the system, it is required to execute multiple transactions concurrently on several sites. Therefore, we need to control these concurrent transactions for maintaining consistency of replica. Replica control become more complex for the environment where messages are delayed due to communication failure. In this paper, we develop formal model of fault-tolerant replica control protocol Using Event-B. Formal methods are mathematical techniques through which we can verify the correctness of model. Event-B is a formal method which is used to develop the model in distributed environment.


Author(s):  
VENKATAKASH RAJ RAOJILLELAMUDI ◽  
SOURAV MUKHERJEE ◽  
Ryan Saptarshi Ray ◽  
Utpal Kumar Ray

The past few years have marked the start of a historic transition from sequential to parallel computation.The necessity to write parallel programs is increasing as systems are getting more complex while processor speed increases are slowing down. Current parallel programming uses low-level programming constructs like threads and explicit synchronization using locks to coordinate thread execution. Parallel programs written with these constructs are difficult to design, program and debug. Also locks have many drawbacks which make them a suboptimal solution. Software Transactional Memory (STM) is a promising new approach to programming shared-memory parallel processors. It is a concurrency control mechanism that is widely considered to be easier to use by programmers than locking. It allows portions of a program to execute in isolation, without regard to other, concurrently executing tasks. A programmer can reason about the correctness of code within a transaction and need not worry about complex interactions with other, concurrently executing parts of the program. This paper shows the concept of writing code using Software Transactional Memory (STM) and the performance comparison of codes using locks with those using STM.


2020 ◽  
Vol 20 (3) ◽  
pp. 71-78
Author(s):  
Yong-Hyeog Kang ◽  
◽  
Wonhyung Park

2005 ◽  
Vol 1 (03) ◽  
pp. 285-290 ◽  
Author(s):  
F. González-Longatt ◽  
◽  
A. Hernandez ◽  
F. Guillen ◽  
C. Fortoul

Sign in / Sign up

Export Citation Format

Share Document