critical section
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2094 (4) ◽  
pp. 042002
Author(s):  
S A Bitkin ◽  
M A Korepanov ◽  
M R Koroleva ◽  
A I Karpov ◽  
S S Makarov

Abstract Numerical modeling of the spatial gas flow in an adjustable nozzle with an asymmetric critical section caused by the overlap of a part of the flow area by a gas flow regulator has been carried out. The mathematical model is based on three-dimensional models of gas dynamics, the method of large particles is used for calculation. When describing the unsteady flow of an inviscid gas, the system of Euler equations is used, written for a computational rectangular plane, taking into account the function of nozzle geometry. The results of calculations of flow parameters along a nozzle path with a uniform outlet section and with an obliquely cut outlet nozzle are presented. Calculations were carried out for completely open critical sections and for half overlapped. For oblique cut nozzles, the overlap of the critical section from the side of the short part and from the side of the long part of the oblique nozzle is considered.


2021 ◽  
Vol 70 (1) ◽  
pp. 15-30
Author(s):  
Mateusz Zieliński ◽  
Piotr Koniorczyk ◽  
Janusz Zmywaczyk ◽  
Marek Preiskorn

Abstract. The paper presents numerical simulations of transient heat conduction in the uncooled nozzle of a short-range anti-aircraft rocket engine. The calculations were made for the configuration of the nozzle with an insert in the critical section made of various materials. The inserts used were: POCO graphite, Al2O3 ceramics, ZrO2-3Y2O3 ceramics. For comparison, numerical simulations of the heat transfer in a nozzle made entirely of St 45 steel, the melting point of which is 1700K, were also carried out. The engine's working time was in the order of 3 s. Numerical simulations were performed using the COMSOL program. The calculation results are given in the form of temperature dependence and heat flux density as a function of time in the critical cross-section. Keywords: non-cooled nozzle, rocket engine, temperature field


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1747
Author(s):  
Simona Ramanauskaite ◽  
Asta Slotkiene ◽  
Kornelija Tunaityte ◽  
Ivan Suzdalev ◽  
Andrius Stankevicius ◽  
...  

Worst-case execution time (WCET) is an important metric in real-time systems that helps in energy usage modeling and predefined execution time requirement evaluation. While basic timing analysis relies on execution path identification and its length evaluation, multi-thread code with critical section usage brings additional complications and requires analysis of resource-waiting time estimation. In this paper, we solve a problem of worst-case execution time overestimation reduction in situations when multiple threads are executing loops with the same critical section usage in each iteration. The experiment showed the worst-case execution time does not take into account the proportion between computational and critical sections; therefore, we proposed a new worst-case execution time calculation model to reduce the overestimation. The proposed model results prove to reduce the overestimation on average by half in comparison to the theoretical model. Therefore, this leads to more accurate execution time and energy consumption estimation.


2021 ◽  
Vol 9 (1) ◽  
pp. 932-947
Author(s):  
Ms. Swati, Dr. Shalini Bhaskar Bajaj, Dr. Vivek Jaglan

We present an efficient locking scheme in a hierarchical data structure. The existing multi-granularity locking mechanism works on two extremes: fine-grained locking through which concurrency is being maximized, and coarse grained locking that is being applied to minimize the locking cost. Between the two extremes, there lies several pare to-optimal options that provide a trade-off between the concurrency that can be attained. In this work, we present a locking technique, Collaborative Granular Version Locking (CGVL) which selects an optimal locking combination to serve locking requests in a hierarchical structure. In CGVL a series of version is being maintained at each granular level which allows the simultaneous execution of read and write operation on the data item. Our study reveals that in order to achieve optimal performance the lock manager explore various locking options by converting certain non-supporting locking modes into supporting locking modes thereby improving the existing compatibility matrix of multiple granularity locking protocol. Our claim is being quantitatively validated by using a Java Sun JDK environment, which shows that our CGVL perform better compared to the state-of-the-art existing MGL methods. In particular, CGVL attains 20% reduction in execution time for the locking operation that are being carried out by considering, the following parameters: i) The number of threads ii) The number of locked object iii) The duration of critical section (CPU Cycles) which significantly supports the achievement of enhanced concurrency  in terms of  the number of concurrent read accesses.


Author(s):  
Т.С. Аббасова ◽  
А.А. Ганюшин ◽  
Ю.Н. Ганюшина

Проанализированы характеристики трафика беспроводной инфокоммуникационной системы, доказано его самоподобие. Описана система имитационного моделирования исследуемого трафика. Разработаны способы совершенствования метода пропорционального распределения пропускной способности системы на основе ON/OFF-модели трафика. Усовершенствована и расширена ON/OFF-модель трафика. Предложен метод перераспределения пропускной способности на основе расширенной ON/OFF-модели трафика на входе в критический участок беспроводной инфокоммуникационной системы. The characteristics of the traffic of the wireless infocommunication system are analyzed, and its self-similarity is proved. The system of simulation modeling of the investigated traffic is described. Methods for improving the method of proportional distribution of the system throughput based on the ON / OFF traffic model have been developed. The ON / OFF traffic model has been improved and expanded. A method of bandwidth redistribution based on an extended ON / OFF traffic model at the entrance to a critical section of a wireless infocommunication system is proposed.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Behrang Beiranvand ◽  
Mehdi Komasi

AbstractIn the present study, using instrumentation data regarding vertical and horizontal displacement of the dam have been analyzed. Also, the largest and most critical section of the Marvak earth dam is modeled with the behavioral model of the Mohr–Coulomb by GeoStudio software. Numerical modeling of the dam has been done considering the actual embankment conditions and to analyze the changes of the immediate settlement during construction and the consolidation settlement just after construction and initial impounding. The outcomes of instrumentation and numerical analysis at the end of Marvak dam construction showed a settlement between 20 and 500 mm. The results show that the settlement will occur during the construction at the upper levels and the end of construction at the middle levels of the dam. By comparing observed and predicted data, multivariate regression and the explanation coefficient criterion (R2) was found to be R2 = 0.9579, which shows a very good correlation between observed and predicted data, and represents a good match for the settlement points and their location with the initial conditions of the design, and the behavior of the dam in terms of the settlement is found to be stable.


Author(s):  
Bruna Catoia ◽  
Arthur Lima Rocha ◽  
Marcelo de Araújo Ferreira

ABSTRACT: Provided that the anchorage capacity is guaranteed at the supports, the bearing capacity of hollow core slabs depends on the shear capacity of the pretensioned concrete webs, wherein the critical section is in a region between h and 2h from the support. For line loads acting within 2h to 6h from the supports, especially for shallow slabs 150 to 200 mm deep, it is likely to have flexure-shear cracks within the transfer region, wherein the bearing capacity is highly affected by the actual prestressing forces at the critical section. Therefore, one of the major questions pondered by structural engineers is to determine the effective amount of prestressing force that affects the shear resistance mechanism near to the support. According to ABNT NBR 14861:2011, the shear capacity is based on the flexure-shear mechanism, wherein the shear strength is a sum of the tensile concrete strength in the slab webs plus the contribution of the prestressing forces at the critical section, wherein a coefficient of 0.15 is considered. However, in both codes NBR 14861 and NBR 6118 it is required that this coefficient 0.15 should be further multiplied by an additional reduction factor in order to take into account the effect of the transmission length near to the support. Considering the current revision of the NBR 14861, this paper presents a theoretical-experimental comparison from standard shear tests of hollow core slabs with nominal depths from 150 to 200 mm carried out in different research at NETPre-UFSCar. Based on the analytical study of each term of the equation for the flexure-shear capacity, it has been observed that the coefficient 0.15 provides a conservative limit for the contribution of the actual prestressing force. Therefore, there is no need to apply any additional reduction factor in order to guarantee a safe design limit for the shear capacity.


2020 ◽  
pp. 15-23
Author(s):  
Олег Владимирович Кислов ◽  
Михаил Анатольевич Шевченко

A promising direction in aviation is the creation of anaircraft for supersonic cruise speeds (Mach 3...4). It is known that ramjet engines are more preferable for Mach numbers larger 3. However, they do not have starting thrust and uneconomical at subsonic flight speeds. At the same time, at subsonic flight speeds, turbofan engines are the most expedient. The combination of the positive properties of turbofan engines at subsonic speeds and a ramjet engines at supersonic speeds is possible by using duct-burning turbofan engine, which can operate at the ramjet mode with the blocked gas turbine duct at supersonic flight conditions. At this mode, duct-burning turbofan engine turns into ramjet engine, which, however, has special features due to the presence of fan in front of the combustion chamber, which operates in turbine mode or in zero power mode and also because of the outlet jet, which has annular shape, flows out from the duct causes the appearance of bottom drag. The presence of bottom drag requires both the development of a mathematical model for its calculation and taking into account its influence on the choice of the control law for the nozzle outlet area. The article presents a mathematical model of the working process of duct-burning turbofan engine at ramjet mode, taking into account the presence of fan in the flow path and bottom drug. Using the developed mathematical model, the regularities of changes in the internal and effective thrust, as well as the specific fuel consumption, depending on the relative fuel consumption and the critical section of the nozzle at a given altitude and flight speed are established. The critical section of the nozzle is the main regulating factor, and the relative fuel consumption is related to the main regulating factor - the fuel consumption. These patterns are useful for choosing a control program.There is such a combination of regulating factors whichprovides two extremes in the regularities of trust and specific fuel consumption changes: the mode of minimum specific fuel consumption and the mode of maximum thrust. In addition, the influence of gas underexpansion in the nozzle on the thrust-economic parameters of the engine and the required area of the nozzle outlet section were estimated. The obtained regularities are advisable to use when engine control program is chosen.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2767
Author(s):  
Camil Lancea ◽  
Ian Campbell ◽  
Lucia-Antoneta Chicos ◽  
Sebastian-Marian Zaharia

Additive manufacturing (AM) techniques can help to reduce the time and cost for manufacturing complex shaped parts. The main goal of this research was to determine the best strength structure of six different types of lattice cells, manufactured using the Poly Jet AM technology. In order to perform the tests, six samples with the same structure were created for each lattice type. For testing the samples in compression, an electromechanical test machine was used. finite element analysis (FEA) analysis was used in order to determine the area where the greatest stresses occured and to estimate the maximal compressive strength. The strongest structure was determined by obtaining the maximal compressive strength. This was calculated in two ways: as a ratio between the maximal supported force and the mass of the sample (N/g) and as a ratio between the maximal supported force and the critical section of the sample (MPa).


Sign in / Sign up

Export Citation Format

Share Document