A novel direct power control strategy of three-level NPC rectifier without abnormal instantaneous reactive power fluctuation

Author(s):  
Ning Li ◽  
Jingjing Huang ◽  
Hui Zhang ◽  
Yue Wang ◽  
Zhao'an Wang
Author(s):  
Fawzi Senani

<span lang="EN-US">The paper presents the complete modeling and control strategy of variable speed wind turbine system (WTS) driven doubly fed induction generators (DFIG). A back-to-back converter is employed for the power conversion exchanged between DFIG and grid. The wind turbine is operated at the maximum power point tracking (MPPT) mode its maximum efficiency. Direct power control (DPC) based on selecting of the appropriate rotor voltage vectors and the errors of the active and reactive power, the control strategy of rotor side converter combines the technique of MPPT and direct power control. In the control system of the grid side converter the direct power control has been used to maintain a constant DC-Link voltage, and the reactive power is set to 0. Simulations results using MATLAB/SIMULINK are presented and discussed on a 1.5MW DFIG wind generation system demonstrate the effectiveness of the proposed control.</span>


Author(s):  
Younes Sahri ◽  
Salah Tamalouzt ◽  
Sofia Belaid Lalouni

The main objective of this paper is the performances analysis of an Enhanced Direct Power Control (EDPC), applied to Doubly Fed Induction Generator (DFIG) driven by variable speed Wind Turbine (WT). This control strategy uses hysteresis regulators and switching table for active and reactive powers control. These latter are estimated using rotor currents and grid voltages instead of a traditional measurement of stator currents. In addition, the EDPC switching table is based on the position of the rotor flux instead of the stator flux in order to have better regulation accuracy because the rotor voltage vector directly influences the rotor flux and has a proportional relationship with the active and reactive powers. All the operating modes (sub-synchronous, super-synchronous, synchronous and over-speed) of the variable speed WT-DFIG system and the possibility of local reactive power compensation are reported and discussed in this paper. Depending on the operating zone of the WT, Maximum Power Point Tracking (MPPT) technique and pitch angle control are considered to optimize the wind energy efficiency. The validation of the proposed EDPC strategy has been performed through simulation tests under MATALB/Simulink, the obtained results show robustness and good performances with low THD of the generated currents.


2011 ◽  
Vol 308-310 ◽  
pp. 1269-1272
Author(s):  
Guang Ye Li ◽  
Jian Ru Wan ◽  
Ming Shui Li

The reactive power is out of control near the fundamental voltage vector in traditional direct power control system, which leads to the current distortion at AC side and the voltage fluctuation at DC side. The mechanisms of the instantaneous active power and the reactive power are analyzed based on the instantaneous power mathematical model of the PWM rectifier. A new direct power control strategy is researched based on novel sector division and novel switching table. This method not only has the advantage of rapid regulation for active power, but also can restrain reactive power fluctuation and reduce switching frequency. Simulative and experimental results verify its feasibility and effectiveness.


2019 ◽  
Vol 102 (1) ◽  
pp. 481-491
Author(s):  
Juan Torres ◽  
Rubén Peña ◽  
Javier Riedemann ◽  
Juan Tapia ◽  
Roberto Moncada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document