An improved control scheme for interleaved flyback converter based micro-inverter to achieve high efficiency

Author(s):  
Tirthasarathi Lodh ◽  
Nataraj Pragallapati ◽  
Vivek Agarwal
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4239
Author(s):  
Salam J. Yaqoob ◽  
Adel Obed ◽  
Rana Zubo ◽  
Yasir I. A. Al-Yasir ◽  
Hussein Fadhel ◽  
...  

The single-stage flyback Photovoltaic (PV) micro-inverter is considered as a simple and small in size topology but requires expensive digital microcontrollers such as Field-Programmable Gate Array (FPGA) or Digital Signal Processor (DSP) to increase the system efficiency, this would increase the cost of the overall system. To solve this problem, based on a single-stage flyback structure, this paper proposed a low cost and simple analog-digital control scheme. This control scheme is implemented using a low cost ATMega microcontroller built in the Arduino Uno board and some analog operational amplifiers. First, the single-stage flyback topology is analyzed theoretically and then the design consideration is obtained. Second, a 120 W prototype was developed in the laboratory to validate the proposed control. To prove the effectiveness of this control, we compared the cost price, overall system efficiency, and THD values of the proposed results with the results obtained by the literature. So, a low system component, single power stage, cheap control scheme, and decent efficiency are achieved by the proposed system. Finally, the experimental results present that the proposed system has a maximum efficiency of 91%, with good values of the total harmonic distortion (THD) compared to the results of other authors.


Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.


Sign in / Sign up

Export Citation Format

Share Document