Economic Analysis of the 55 MWe Gedongsongo Geothermal Power Plant Project

Author(s):  
Arizona Yoris Wirawan ◽  
Eko Widi Pramudiohadi
Energy ◽  
2015 ◽  
Vol 87 ◽  
pp. 326-335 ◽  
Author(s):  
Mohammad Ayub ◽  
Alexander Mitsos ◽  
Hadi Ghasemi

2018 ◽  
Vol 22 (5) ◽  
pp. 2137-2150 ◽  
Author(s):  
Nenad Mustapic ◽  
Vladislav Brkic ◽  
Matija Kerin

This paper is focused both on the thermodynamic and economic analysis of an organic Rankine cycle (ORC) based geothermal power plant. The analysis is applied to a case study of the geothermal field Recica near the city of Karlovac. Simple cycle configuration of the ORC was applied. Thermodynamic and economic performance of an ORC geothermal system using 8 working fluids: R134a, isobutane, R245fa, R601, R601a, R290, R1234yf, and R1234ze(E)], with different critical temperatures are analyzed. The thermodynamic analysis is performed on the basis of the analysis of influence of the operation conditions, such as evaporation and condensation temperatures and pressures, and evaporator and con-denser pinch point temperature difference, on the cycle characteristics such as net power output, and plant irreversibility. The economic analysis is performed on the basis of relationship between the net power output and the total cost of equipment used in the ORC. Mathematical models are defined for proposed organic Rankine geothermal power plant, and the analysis is performed by using the software package engineering equation solver. The analysis reveals that the working fluids, n-pentane and isopentane, show the best economic performances, regardless the evaporation temperatures, while the working fluid R1234yf and R290 have the best thermodynamic performances. In addition, each analyzed working fluid has its corresponding economically optimal condensation temperature (and condensation pressure). Economically optimal pinch point temperature difference of evaporator has different values, depending on the working fluid, while pinch point temperature difference of condenser has similar values for all analyzed working fluids. Analysis results demonstrate that the subcritical ORC geothermal power plant represents a promising option for electricity production application.


2021 ◽  
pp. 83-86
Author(s):  
PALINA PAVLOVNA PROTSENKO ◽  
◽  
ANTON ANDREEVICH VEKLICH ◽  

This article discusses the design of a geothermal power plant on the promising area of the active Avachinsky volcano, the advantages and disadvantages of its operation, as well as the determination of the exact location of the power plant for efficient operation based on geophysical studies and a comparative economic analysis with the existing traditional power plants of the Kamchatka territory.


2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


Sign in / Sign up

Export Citation Format

Share Document