Automatic interpretation of Dutch addresses

Author(s):  
R.J.N. Kalberg ◽  
G.H. Quint ◽  
H. Scholten
2020 ◽  
Vol 10 (1) ◽  
pp. 642-648
Author(s):  
Anna-Mari Wartiainen ◽  
Markus Harju ◽  
Satu Tamminen ◽  
Leena Määttä ◽  
Tuomas Alatarvas ◽  
...  

AbstractNon-metallic inclusions, especially large or clustered inclusions, in steel are usually harmful. Thus, the microscopic analysis of test specimens is an important part of the quality control. This steel purity analysis produces a large amount of individual inclusion information for each test specimen. The interpretation of the results is laborious and the comparison of larger product groups practically impossible. The purpose of this study was to develop an easy-to-use tool for automatic interpretation of the SEM analysis to differentiate clustered and large inclusions information from the manifold individual inclusion information. Because of the large variety of the potential users, the tool needs to be applicable for any steel grade and application, both for liquid and final product specimen, to analyse automatically steel specimen inclusions, especially inclusion clusters, based on the INCA Feature program produced data from SEM/EDS. The developed tool can be used to improve the controlling of the steel purity or for automatic production of new inclusion cluster features that can be utilised further in quality prediction models, for example.


2006 ◽  
Vol 18 (6) ◽  
pp. 1441-1471 ◽  
Author(s):  
Christian Eckes ◽  
Jochen Triesch ◽  
Christoph von der Malsburg

We present a system for the automatic interpretation of cluttered scenes containing multiple partly occluded objects in front of unknown, complex backgrounds. The system is based on an extended elastic graph matching algorithm that allows the explicit modeling of partial occlusions. Our approach extends an earlier system in two ways. First, we use elastic graph matching in stereo image pairs to increase matching robustness and disambiguate occlusion relations. Second, we use richer feature descriptions in the object models by integrating shape and texture with color features. We demonstrate that the combination of both extensions substantially increases recognition performance. The system learns about new objects in a simple one-shot learning approach. Despite the lack of statistical information in the object models and the lack of an explicit background model, our system performs surprisingly well for this very difficult task. Our results underscore the advantages of view-based feature constellation representations for difficult object recognition problems.


2011 ◽  
Author(s):  
Jun Guo ◽  
Kun Yang ◽  
Jie Sun ◽  
Gang Wang ◽  
Wen-sheng Wang

Author(s):  
Santiago Figueroa-Gutierrez ◽  
Luis Gerardo Montane-Jimenez ◽  
Juan Carlos Perez-Arriaga ◽  
Jose Rafael Rojano-Caceres ◽  
Guadalupe Toledo-Toledo

2020 ◽  
Vol 195 (2) ◽  
Author(s):  
Seungsoo Jang ◽  
Sung-Gyun Shin ◽  
Min-Jae Lee ◽  
Sangsoo Han ◽  
Chan-Ho Choi ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 98 ◽  
Author(s):  
Tessio Novack ◽  
Leonard Vorbeck ◽  
Heinrich Lorei ◽  
Alexander Zipf

As a recognized type of art, graffiti is a cultural asset and an important aspect of a city’s aesthetics. As such, graffiti is associated with social and commercial vibrancy and is known to attract tourists. However, positional uncertainty and incompleteness are current issues of open geo-datasets containing graffiti data. In this paper, we present an approach towards detecting building facades with graffiti artwork based on the automatic interpretation of images from Google Street View (GSV). It starts with the identification of geo-tagged photos of graffiti artwork posted on the photo sharing media Flickr. GSV images are then extracted from the surroundings of these photos and interpreted by a customized, i.e., transfer learned, convolutional neural network. The compass heading of the GSV images classified as containing graffiti artwork and the possible positions of their acquisition are considered for scoring building facades according to their potential of containing the artwork observable in the GSV images. More than 36,000 GSV images and 5000 facades from buildings represented in OpenStreetMap were processed and evaluated. Precision and recall rates were computed for different facade score thresholds. False-positive errors are caused mostly by advertisements and scribblings on the building facades as well as by movable objects containing graffiti artwork and obstructing the facades. However, considering higher scores as threshold for detecting facades containing graffiti leads to the perfect precision rate. Our approach can be applied for identifying previously unmapped graffiti artwork and for assisting map contributors interested in the topic. Furthermore, researchers interested on the spatial correlations between graffiti artwork and socio-economic factors can profit from our open-access code and results.


Sign in / Sign up

Export Citation Format

Share Document