Fusion of an Isometric Deformation Modeling Approach Using Spectral Decomposition and a Region-Based Approach Using ICP for Expression-Invariant 3D Face Recognition

Author(s):  
Dirk Smeets ◽  
Thomas Fabry ◽  
Jeroen Hermans ◽  
Dirk Vandermeulen ◽  
Paul Suetens
Author(s):  
Javad Sovizi ◽  
Rahul Rai ◽  
Venkat Krovi

In this paper, 3D face recognition under isometric deformation (induced by facial expressions) is considered. The main objective is to employ the shape descriptors that are invariant to (isometric) deformations to provide an efficient face recognition algorithm. Two methods of the correspondence are utilized for automatic landmark assignment to the query face. One is based on the conventional iterative closest point (ICP) method and another is based upon the geometrical/topological features of the human face. The shape descriptor is chosen to be the well-known geodesic distance (GD) measure. The recognition task is performed on SHREC08 database for both correspondence methods and the effect of feature (GD) vector size as well as landmark positions on the recognition accuracy were argued.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


2015 ◽  
Author(s):  
Beatriz A. Echeagaray-Patrón ◽  
Vitaly Kober

Sign in / Sign up

Export Citation Format

Share Document