scholarly journals Temporal Attention-Augmented Graph Convolutional Network for Efficient Skeleton-Based Human Action Recognition

Author(s):  
Negar Heidari ◽  
Alexandros Iosifidis
2021 ◽  
Vol 58 (2) ◽  
pp. 0210007
Author(s):  
张文强 Zhang Wenqiang ◽  
王增强 Wang Zengqiang ◽  
张良 Zhang Liang

2020 ◽  
Vol 34 (03) ◽  
pp. 2669-2676 ◽  
Author(s):  
Wei Peng ◽  
Xiaopeng Hong ◽  
Haoyu Chen ◽  
Guoying Zhao

Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5260 ◽  
Author(s):  
Fanjia Li ◽  
Juanjuan Li ◽  
Aichun Zhu ◽  
Yonggang Xu ◽  
Hongsheng Yin ◽  
...  

In the skeleton-based human action recognition domain, the spatial-temporal graph convolution networks (ST-GCNs) have made great progress recently. However, they use only one fixed temporal convolution kernel, which is not enough to extract the temporal cues comprehensively. Moreover, simply connecting the spatial graph convolution layer (GCL) and the temporal GCL in series is not the optimal solution. To this end, we propose a novel enhanced spatial and extended temporal graph convolutional network (EE-GCN) in this paper. Three convolution kernels with different sizes are chosen to extract the discriminative temporal features from shorter to longer terms. The corresponding GCLs are then concatenated by a powerful yet efficient one-shot aggregation (OSA) + effective squeeze-excitation (eSE) structure. The OSA module aggregates the features from each layer once to the output, and the eSE module explores the interdependency between the channels of the output. Besides, we propose a new connection paradigm to enhance the spatial features, which expand the serial connection to a combination of serial and parallel connections by adding a spatial GCL in parallel with the temporal GCLs. The proposed method is evaluated on three large scale datasets, and the experimental results show that the performance of our method exceeds previous state-of-the-art methods.


2021 ◽  
pp. 108068
Author(s):  
Jonghyun Kim ◽  
Gen Li ◽  
Inyong Yun ◽  
Cheolkon Jung ◽  
Joongkyu Kim

2018 ◽  
Vol 29 (7) ◽  
pp. 1127-1142 ◽  
Author(s):  
Hong Zhang ◽  
Miao Xin ◽  
Shuhang Wang ◽  
Yifan Yang ◽  
Lei Zhang ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 43243-43255 ◽  
Author(s):  
Jiahui Yu ◽  
Hongwei Gao ◽  
Wei Yang ◽  
Yueqiu Jiang ◽  
Weihong Chin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document