A Direct Method for Calculation of Steady-state Operating Conditions of a Doubly Fed Induction Generator

Author(s):  
D. R. Karthik ◽  
Shashidhara Mecha Kotian ◽  
Narayan Suresh Manjarekar
Author(s):  
Sukhwinder Singh Dhillon ◽  
Jagdeep Singh Lather ◽  
Sanjay Marwaha

This paper present steady state and dynamic (Transient) models of the doubly fed induction generator connected to grid. The steady state model of the DFIAG (Doubly Fed Asynchronous induction Generator) has been constructed by referring all the rotor quantities to stator side. With the help of MATLAB programming simulation results are obtained to depict the steady state response of electromechanical torque, rotor speed, stator and rotor currents, stator and rotor fluxes, active and reactive drawn and delivered by Doubly fed Asynchronous Induction machine (DFAIM) as it is operating in two modes i.e. generator and motor. The mathematical steady state and transient model of the DFIAM is constructed for three basic reference frames such as rotor, stator and synchronously revolving reference frame using first order deferential equations. The effect of unsaturated and saturated resultant flux on the mutual inductance is also taken into account to deeply understand the dynamic response of the machine. The steady state and dynamic response of the DFAIG are compared for different rotor voltage magnitudes. Also, the effect of variations in mechanical input torque, stator voltage variations are simulated to predict the stator and rotor currents, active and reactive power, electromagnetic torque and rotor speed variations.


Author(s):  
Sukhwinder Singh Dhillon ◽  
Jagdeep Singh Lather ◽  
Sanjay Marwaha

This paper present steady state and dynamic (Transient) models of the doubly fed induction generator connected to grid. The steady state model of the DFIAG (doubly fed asynchronous induction generator) has been constructed by referring all the rotor quantities to stator side. With the help of MATLAB programming simulation results are obtained to depict the steady state response of electromechanical torque, rotor speed, stator and rotor currents, stator and rotor fluxes, active and reactive drawn and delivered by Doubly Fed Asynchronous Induction Machine (DFAIM) as it is operating in two modes i.e. generator and motor. The mathematical steady state and transient model of the DFIAM is constructed for three basic reference frames such as rotor, stator and synchronously revolving reference frame using first order deferential equations. The effect of unsaturated and saturated resultant flux on the mutual inductance is also taken into account to deeply understand the dynamic response of the machine. The steady state and dynamic response of the DFAIG are compared for different rotor voltage magnitudes. Also, the effect of variations in mechanical input torque, stator voltage variations are simulated to predict the stator and rotor currents, active and reactive power, electromagnetic torque and rotor speed variations.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 9479-9488 ◽  
Author(s):  
Yuntao Ju ◽  
Fuchao Ge ◽  
Wenchuan Wu ◽  
Yi Lin ◽  
Jing Wang

Author(s):  
Ghulam sarwar Kaloi ◽  
Jie Wang ◽  
Mazhar H Baloch

<p><em> </em><em>     </em>The present paper formulates the state space modeling of doubly fed induction generator (DFIG) based wind turbine system for the purpose of the stability analysis. The objective of this study is to discuss the various modes of operation of the DFIG system under different operating conditions such as voltage sags with reference to variable wind speed and grid connection. The proposed control methodology exploits the potential of the DFIG scheme to avoid that grid voltage unbalances compromise the machine operation, and to compensate voltage unbalances at the point of common coupling (PCC), preventing adverse effects on loads connected next to the PCC. This methodology uses the rotor side converter (RSC) to control the stator current injected through the machine and the GSC to control the stator voltage to minimize the electromagnetic torque oscillations. Extensive simulation results on a 2MW DFIG wind turbine system illustrate the enhanced system performance and verify the effectiveness of the controller.</p>


2011 ◽  
Vol 03 (04) ◽  
pp. 393-400 ◽  
Author(s):  
Ahmad M. Alkandari ◽  
S. A. Soliman ◽  
Mansour H. Abdel-Rahman

Sign in / Sign up

Export Citation Format

Share Document