A Reserve optimization Model in the Integrated Energy System Considering the Uncertainty of Wind Power and Photovoltaic

Author(s):  
Zhenlan Dou ◽  
Chunyan Zhang ◽  
Dong Han ◽  
Haoting Fan ◽  
Zhan Xiong
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3437 ◽  
Author(s):  
Zhongfu Tan ◽  
Qingkun Tan ◽  
Shenbo Yang ◽  
Liwei Ju ◽  
Gejirifu De

The uncertainty of wind power and photoelectric power output will cause fluctuations in system frequency and power quality. To ensure the stable operation of the power system, a comprehensive scheduling optimization model for the electricity-to-gas integrated energy system is proposed. Power-to-gas (P2G) technology enhances the flexibility of the integrated energy system and the power system in absorbing renewable energy. In this context, firstly, an electricity-to-gas optimization scheduling model is proposed, and the improved Conditional Value at Risk (CVaR) is proposed to deal with the uncertainty of wind power and photoelectric power output. Secondly, taking the integrated energy system with the P2G operating cost and the carbon emission cost as the objective function, an optimal scheduling model of the multi-energy system is solved by the A Mathematical Programming Language (AMPL) solver. Finally, the results of the example illustrate the optimal multi-energy system scheduling model and analyze the economic benefits of the P2G technology to improve the system to absorb wind power and photovoltaic power. The simulation calculation of the proposed model demonstrates the necessity of taking into account the operating cost of the electrical gas conversion in the integrated energy system, and the feasibility of considering the economic and wind power acceptance capabilities.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2018 ◽  
Vol 232 ◽  
pp. 607-616 ◽  
Author(s):  
Chenyu Wu ◽  
Wei Gu ◽  
Yinliang Xu ◽  
Ping Jiang ◽  
Shuai Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document