Design of Hybrid Element Transmitarray Antenna with Beamforming at Millimeter-wave Frequency

Author(s):  
Maulia Wellandari ◽  
Ahmad Firdausi ◽  
Umaisaroh Umaisaroh ◽  
Mudrik Alaydrus
2018 ◽  
Vol 7 (2.7) ◽  
pp. 532 ◽  
Author(s):  
R Siri Chandana ◽  
P Sai Deepthi ◽  
D Sriram Teja ◽  
N Veera JayaKrishna ◽  
M Sujatha

This article is about a single band microstrip patch antenna used for the 5G applications. And this antenna is suitable for the millimeter wave frequency. The patch antenna design consists of 2 E shaped slots and 1 H shaped slot. These slots are loaded on the radiating patch with the 50 ohms microstrip feed line. For the simulation purpose, Rogers’s RT5880 dielectric substrate with relative permittivity of 2.2 and loss tangent of 0.0009 is used. The design and simulation of the antenna is done using HFSS (High Frequency Structure Simulator) software. The results are simulated for the parameters Return loss, VSWR, 3D Radiation pattern. The proposed antenna has a return loss of -42.4383 at 59 GHz millimeter wave frequency. 


Author(s):  
Vojislav Milosevic ◽  
Branka Jokanovic ◽  
Olga Boric-Lubecke ◽  
Victor M. Lubecke

This chapter presents an overview on the drivers behind the 5G evolution and explains technological breakthroughs in the microwave and millimeter wave domain that will create the 5G backbone. Extensions to millimeter wave frequency bands, advanced multi-antenna systems and antenna beamforming and simultaneous transmission and reception are some of the prospects that could lead to both architectural and component disruptive design changes in the future 5G. 5G is expected to include an innovative set of technologies that will radically change our private and professional lives, though applications of novel services, such as remote healthcare, driverless cars, wireless robots and connected homes, which will alter boundaries between the real and the cyber world.


Sign in / Sign up

Export Citation Format

Share Document