simultaneous transmission
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 49)

H-INDEX

21
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7974
Author(s):  
Wisnu Murti ◽  
Ji-Hoon Yun

Multi-link operation is a new feature of IEEE 802.11be Extremely High Throughput (EHT) that enables the utilization of multiple links using individual frequency channels to transmit and receive between EHT devices. This paper aims to illustrate enhanced multi-link channel access schemes, identify the associated coexistence challenge, and propose solutions. First, we describe the multi-link operation of IEEE 802.11be and how the asynchronous and synchronous channel access schemes facilitate multi-link utilization. Next, we describe the design variants of the synchronous channel access scheme and demonstrate the associated coexistence challenge. Subsequently, we propose four features to address this challenge by assigning penalties to multi-link devices (repicking a backoff count, doubling the contention window size, switching to another contention window set, and compensating the backoff count) as well as five coexistence solutions derived from combinations of these features. Comparative simulation results are provided and analyzed for dense single-spot and indoor random deployment scenarios, demonstrating that the throughput and latency gains of multi-link operation differ between schemes. At the same time, we investigate the coexistence performance of multi-link operation with and without the capability of simultaneous transmission and reception and demonstrate that the proposed solutions mitigate the coexistence problem. In particular, compensating the backoff count achieves the highest coexistence performance among the proposed solutions, with a marginal throughput decrease of multi-link devices. A metric for evaluating both the throughput and latency gains and the coexistence performance of a multi-link channel access scheme using a single value is also proposed.


Daphnis ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 271-292
Author(s):  
Nadine Jäger

Abstract Using the example of the Dance of Death of Bern, this article points out that it is not alone the contents, but the divergent communication modes of image and text that are interwoven and cooperate, while each maintains its distinct message: the text emphasizes the individual due to its successive mode of communication, the image’s simultaneous transmission of information focusses on the collective. By these means, the Dance of Death expresses its admonition and induces the recipient to critical introspection.


2021 ◽  
Author(s):  
Mohammed Aljubayri ◽  
Tong Peng ◽  
Mohammad Shikh-Bahaei

AbstractMulti-homed devices such as smartphones, tablets and laptops are enabled with multiple heterogeneous interfaces available for transmission. Those interfaces can be utilized for simultaneous transmission of a single TCP flow using Multipath TCP (MPTCP). MPTCP is a protocol that is designed to increase end-to-end throughput and reliability of communications by splitting data through multiple parallel paths. Although delay in MPTCP enhanced significantly in the recent years, high number of data transmissions remains an issue. In this paper, we reduce MPTCP delay by reducing the number of transmissions using Opportunistic Routing (OR) technique. OR is a routing model used to increase the delivery rate and reliability of data transmission in wireless networks by using the broadcasting method. This enables each subflow data to be delivered by multiple relays. We adapted OR on a number of MPTCP protocols namely, traditional MPTCP, Multipath TCP Traffic Splitting Control (MPTCP-TSC) and Redundant MPTCP (ReMP TCP) in an Internet of Things (IoT) environment. The results show that OR-based MPTCP schemes outperform existing schemes. We further compared the OR-based MPTCP protocols in terms of startup delay and energy efficiency. We found that ReMP TCP is better than other schemes in all scenarios.


Author(s):  
Sinan A. Khwandah ◽  
John P. Cosmas ◽  
Pavlos I. Lazaridis ◽  
Zaharias D. Zaharis ◽  
Ioannis P. Chochliouros

AbstractMassive MIMO will improve the performance of future 5G systems in terms of data rate and spectral efficiency, while accommodating a large number of users. Furthermore, it allows for 3D beamforming in order to provide more degrees of freedom and increase the number of high-throughput users. Massive MIMO is expected to provide more advantages compared to other solutions in terms of energy and spectral efficiency. This will be achieved by focusing the radiation towards the direction of the intended users, thus implementing simultaneous transmission to many users while keeping interference low. It can boost the capacity compared to a conventional antenna solution, resulting in a spectral efficiency up to 50 times greater than that provided by actual 4G technology. However, to take full advantage of this technology and to overcome the challenges of implementation in a real environment, a complicated radio system is required. The purpose of this work is to present the MIMO technology evolution and challenges in a simple introductory way and investigate potential system enhancements.


Author(s):  
Nikita Yankovskii ◽  
Igor Pastushok

Problem statement: The proliferation of services and applications requiring ultra-low latency and high reliability of data transmission in communication networks leads to creating new approaches and architectures in order to ensure the simultaneous transmission of Enhanced Mobile Broadband (eMBB) and Ultra-Reliable and Low Latency Communication (URLLC)  traffic. Providing efficient eMBB and URLLC multiplexing schemes with preset key performance indicators for each stream is the most challenging problem in wireless network development. Purpose: To provide a simultaneous transmission of eMBB and URLLC streams without reducing the user experience of eMBB services by developing a multiplexing scheme and the coherent architecture of physical (PHY) and media access control (MAC) layers in the downlink channel. Results: An eMBB and URLLC multiplexing scheme has been proposed, along with a coherent architecture for PHY and MAC layers, ensuring the given wireless network key performance indicators. The proposed solution performance has been estimated by simulation. The multiplexing scheme outperforms the baseline solution in Bit Error Rate and Frame Error Rate metrics. The coherent PHY and MAC layers architecture provides transmission with an arrival rate of 400 messages per millisecond and 99% message delivery probability in one millisecond. Practical relevance: The obtained results allow communication system developers to deploy centralized wireless networks at industrial objects.


2021 ◽  
Vol 46 (9) ◽  
pp. 2075
Author(s):  
Xumin Gao ◽  
Bolun Jia ◽  
ZiQi Ye ◽  
Linning Wang ◽  
Kang Fu ◽  
...  

Author(s):  
Bilal Tasdelen ◽  
Alireza Sadeghi‐Tarakameh ◽  
Ugur Yilmaz ◽  
Ergin Atalar

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Jun Lu ◽  
Qunfei Zhang ◽  
Wentao Shi ◽  
Lingling Zhang ◽  
Juan Shi

Self-interference (SI) is usually generated by the simultaneous transmission and reception in the same system, and the variable SI channel and impulsive noise make it difficult to eliminate. Therefore, this paper proposes an adaptive digital SI cancellation algorithm, which is an improved normalized sub-band adaptive filtering (NSAF) algorithm based on the sparsity of the SI channel and the arctangent cost function. The weight vector is hardly updated when the impulsive noise occurs, and the iteration error resulting from impulsive noise is significantly reduced. Another major factor affecting the performance of SI cancellation is the variable SI channel. To solve this problem, the sparsity of the SI channel is estimated with the estimation of the weight vector at each iteration, and it is used to adjust the weight vector. Then, the convergence performance and calculation complexity are analyzed theoretically. Simulation results indicate that the proposed algorithm has better performance than the referenced algorithms.


Sign in / Sign up

Export Citation Format

Share Document