Solution Of Strongly Nonlinear Fractional-Order Oscillators Problems By Using The Optimal Homotopy Asymptotic Method

Author(s):  
Ghenaiet Bahia ◽  
Ouannas Adel
2016 ◽  
Vol 09 (06) ◽  
pp. 1650081 ◽  
Author(s):  
S. Sarwar ◽  
M. A. Zahid ◽  
S. Iqbal

In this paper, we study the fractional-order biological population models (FBPMs) with Malthusian, Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asymptotic method (OHAM) for partial differential equations (PDEs) is extended and successfully implemented to solve FBPMs. Third-order approximate solutions are obtained and compared with the exact solutions. The numerical results unveil that the proposed extension in the OHAM for fractional-order differential problems is very effective and simple in computation. The results reveal the effectiveness with high accuracy and extremely efficient to handle most complicated biological population models.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 264 ◽  
Author(s):  
H. Younas ◽  
Muhammad Mustahsan ◽  
Tareq Manzoor ◽  
Nadeem Salamat ◽  
S. Iqbal

In this article, Optimal Homotopy Asymptotic Method (OHAM) is used to approximate results of time-fractional order Fokker-Planck equations. In this work, 3rd order results obtained through OHAM are compared with the exact solutions. It was observed that results from OHAM have better convergence rate for time-fractional order Fokker-Planck equations. The solutions are plotted and the relative errors are tabulated.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2218
Author(s):  
Mohd Taib Shatnawi ◽  
Adel Ouannas ◽  
Ghenaiet Bahia ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi

This paper proceeds from the perspective that most strongly nonlinear oscillators of fractional-order do not enjoy exact analytical solutions. Undoubtedly, this is a good enough reason to employ one of the major recent approximate methods, namely an Optimal Homotopy Asymptotic Method (OHAM), to offer approximate analytic solutions for two strongly fractional-order nonlinear benchmark oscillatory problems, namely: the fractional-order Duffing-relativistic oscillator and the fractional-order stretched elastic wire oscillator (with a mass attached to its midpoint). In this work, a further modification has been proposed for such method and then carried out through establishing an optimal auxiliary linear operator, an auxiliary function, and an auxiliary control parameter. In view of the two aforesaid applications, it has been demonstrated that the OHAM is a reliable approach for controlling the convergence of approximate solutions and, hence, it is an effective tool for dealing with such problems. This assertion is completely confirmed by performing several graphical comparisons between the OHAM and the Homotopy Analysis Method (HAM).


Sign in / Sign up

Export Citation Format

Share Document