scholarly journals The Optimal Homotopy Asymptotic Method for Solving Two Strongly Fractional-Order Nonlinear Benchmark Oscillatory Problems

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2218
Author(s):  
Mohd Taib Shatnawi ◽  
Adel Ouannas ◽  
Ghenaiet Bahia ◽  
Iqbal M. Batiha ◽  
Giuseppe Grassi

This paper proceeds from the perspective that most strongly nonlinear oscillators of fractional-order do not enjoy exact analytical solutions. Undoubtedly, this is a good enough reason to employ one of the major recent approximate methods, namely an Optimal Homotopy Asymptotic Method (OHAM), to offer approximate analytic solutions for two strongly fractional-order nonlinear benchmark oscillatory problems, namely: the fractional-order Duffing-relativistic oscillator and the fractional-order stretched elastic wire oscillator (with a mass attached to its midpoint). In this work, a further modification has been proposed for such method and then carried out through establishing an optimal auxiliary linear operator, an auxiliary function, and an auxiliary control parameter. In view of the two aforesaid applications, it has been demonstrated that the OHAM is a reliable approach for controlling the convergence of approximate solutions and, hence, it is an effective tool for dealing with such problems. This assertion is completely confirmed by performing several graphical comparisons between the OHAM and the Homotopy Analysis Method (HAM).

2016 ◽  
Vol 09 (06) ◽  
pp. 1650081 ◽  
Author(s):  
S. Sarwar ◽  
M. A. Zahid ◽  
S. Iqbal

In this paper, we study the fractional-order biological population models (FBPMs) with Malthusian, Verhulst, and porous media laws. The fractional derivative is defined in Caputo sense. The optimal homotopy asymptotic method (OHAM) for partial differential equations (PDEs) is extended and successfully implemented to solve FBPMs. Third-order approximate solutions are obtained and compared with the exact solutions. The numerical results unveil that the proposed extension in the OHAM for fractional-order differential problems is very effective and simple in computation. The results reveal the effectiveness with high accuracy and extremely efficient to handle most complicated biological population models.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
H. Ullah ◽  
S. Islam ◽  
M. Idrees ◽  
M. Fiza

We applied a new analytic approximate technique, optimal homotopy asymptotic method (OHAM), for treatment of differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Volterra equation in different form. It provides us with a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier, and explicit.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Ullah ◽  
S. Islam ◽  
M. Idrees ◽  
M. Arif

Application of Optimal Homotopy Asymptotic Method (OHAM), a new analytic approximate technique for treatment of Falkner-Skan equations with heat transfer, has been applied in this work. To see the efficiency of the method, we consider Falkner-Skan equations with heat transfer. It provides us with a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature as finite difference (N. S. Asaithambi, 1997) and shooting method (Cebeci and Keller, 1971). The obtained solutions show that OHAM is effective, simpler, easier, and explicit.


Author(s):  
Mehmet Senol ◽  
Lanre Akinyemi ◽  
Ayşe Ata ◽  
Olaniyi S. Iyiola

In this study, we consider conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation. Three powerful analytical methods are employed to obtain generalized solutions of the nonlinear equation of interest. First, the sub-equation method is used as baseline where generalized closed form solutions are obtained and are exact for any fractional order [Formula: see text]. Furthermore, residual power series method (RPSM) and [Formula: see text]-homotopy analysis method ([Formula: see text]-HAM) are then applied to obtain approximate solutions. These are possible using some properties of conformable derivative. These approximate methods are very powerful and efficient due to the absence of the need for linearization, discretization and perturbation. Numerical simulations are carried out showing error values, [Formula: see text]-curve for [Formula: see text]-HAM and the effects of fractional order on the solution profiles.


2013 ◽  
Vol 430 ◽  
pp. 22-26 ◽  
Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu ◽  
Traian Marinca

The response of a cantilever beam with a lumped mass attached to its free end subject to harmonical excitation at the base is investigated by means of the Optimal Homotopy Asymptotic Method (OHAM). Approximate accurate analytical expressions for the solutions and for approximate frequency are determined. This method does not require any small parameter in the equation. The obtained results prove that our method is very accurate, effective and simple for investigation of such engineering problems.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Emran Khoshrouye Ghiasi ◽  
Reza Saleh

AbstractIn this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 620-626 ◽  
Author(s):  
Vasile Marinca ◽  
Remus-Daniel Ene ◽  
Liviu Bereteu

AbstractDynamic response time is an important feature for determining the performance of magnetorheological (MR) dampers in practical civil engineering applications. The objective of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to give approximate analytical solutions of the nonlinear differential equation of a modified Bingham model with non-viscous exponential damping. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. OHAM is very efficient in practice for ensuring very rapid convergence of the solution after only one iteration and with a small number of steps.


Open Physics ◽  
2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Vasile Marinca ◽  
Remus-Daniel Ene

AbstractThe purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.


Sign in / Sign up

Export Citation Format

Share Document