Solution of strongly nonlinear ordinary differential equations arising in heat transfer with optimal homotopy asymptotic method

2012 ◽  
Vol 55 (21-22) ◽  
pp. 5737-5743 ◽  
Author(s):  
Sirajul Haq ◽  
Muhammad Ishaq
2020 ◽  
Vol 98 (1) ◽  
pp. 32-38 ◽  
Author(s):  
S. Nadeem ◽  
M.Y. Malik ◽  
Nadeem Abbas

In this article, we deal with prescribed exponential surface temperature and prescribed exponential heat flux due to micropolar fluids flow on a Riga plate. The flow is induced through an exponentially stretching surface within the time-dependent thermal conductivity. Analysis is performed inside the heat transfer. In our study, two cases are discussed here, namely prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux (PEHF). The governing systems of the nonlinear partial differential equations are converted into nonlinear ordinary differential equations using appropriate similarity transformations and boundary layer approach. The reduced systems of nonlinear ordinary differential equations are solved numerically with the help of bvp4c. The significant results are shown in tables and graphs. The variation due to modified Hartman number M is observed in θ (PEST) and [Formula: see text] (PEHF). θ and [Formula: see text] are also reduced for higher values of the radiation parameter Tr. Obtained results are compared with results from the literature.


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
K. Vajravelu ◽  
K. V. Prasad ◽  
P. S. Datti

In this paper, we investigate the influence of temperature-dependent fluid properties on the flow and heat transfer characteristics of an electrically conducting dusty fluid over a stretching sheet. Temperature-dependent fluid properties are assumed to vary as a function of the temperature. The governing coupled nonlinear partial differential equations along with the appropriate boundary conditions are transformed into coupled, nonlinear ordinary differential equations by a similarity transformation. The resultant coupled highly nonlinear ordinary differential equations are solved numerically by a second order implicit finite difference scheme known as the Keller–Box method. The numerical solutions are compared with the approximate analytical solutions, obtained by a perturbation technique. The analysis reveals that even in the presence of variable fluid properties the transverse velocity of the fluid is to decrease with an increase in the fluid-particle interaction parameter. This observation holds even in the presence of magnetic field. Furthermore, the effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are assessed through tables and graphs.


2017 ◽  
Vol 11 ◽  
pp. 110-128
Author(s):  
Shoeb R. Sayyed ◽  
B.B. Singh ◽  
Nasreen Bano

In the present study, an analytical analysis has been carried out to investigate the MHD stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in a porous medium in the presence of thermal radiation. Similarity transformations have been employed to simplify the momentum and energy equations into coupled nonlinear ordinary differential equations. The resulting nonlinear ordinary differential equations are then solved analytically through BVPh 2.0 Mathematica package based on homotopy analysis method (HAM). Effects of various parameters such as Prandtl number, permeability parameter, magnetic parameter, suction/blowing parameter, stretching/shrinking parameter, radiation parameter and wall temperature exponent on velocity and/or temperature profiles are explored and discussed graphically. Our results have been compared with the available literature and have been found in excellent agreement. This study may have applications in metallurgy industry and aerodynamic extrusion of plastic sheet.


In this paper we investigated an unsteady magnetohydrodynamics flow of Bingham fluid with Hall Effect of heat transfer. Partial differential equations are simplified to higher order differential equations. MATLAB integrated bvp4c digital solver for velocity and temperature solves a set of nonlinear ordinary differential equations. The graphs show the effect of different parameters of velocity and temperature


2012 ◽  
Vol 67 (3-4) ◽  
pp. 147-152 ◽  
Author(s):  
Yasir Khan ◽  
Qingbiao Wu ◽  
Naeem Faraz ◽  
Ahmet Yıldırım ◽  
Syed Tauseef Mohyud-Din

In this paper, a two-dimensional, steady magnetohydrodynamic flow and heat transfer analysis of a non-Newtonian fluid in a channel with a constant wall temperature are considered in the presence of thermal radiation. The steady Navier-Stokes equations are reduced to nonlinear ordinary differential equations by using similarity variables. The homotopy perturbation method is used to solve the nonlinear ordinary differential equations. The effects of the pertinent parameters on the velocity and temperature field are discussed


Sign in / Sign up

Export Citation Format

Share Document