A Topographical Feature Extraction Approach for Classification of Soil Hyperspectral Image

Author(s):  
Sangeetha Annam ◽  
Anshu Singla
Author(s):  
A. Kianisarkaleh ◽  
H. Ghassemian ◽  
F. Razzazi

Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.


Author(s):  
H. Teffahi ◽  
N. Teffahi

Abstract. The classification of hyperspectral image (HSI) with high spectral and spatial resolution represents an important and challenging task in image processing and remote sensing (RS) domains due to the problem of computational complexity and big dimensionality of the remote sensing images. The spatial and spectral pixel characteristics have crucial significance for hyperspectral image classification and to take into account these two types of characteristics, various classification and feature extraction methods have been developed to improve spectral-spatial classification of remote sensing images for thematic mapping purposes such as agricultural mapping, urban mapping, emergency mapping in case of natural disasters... In recent years, mathematical morphology and deep learning (DL) have been recognized as prominent feature extraction techniques that led to remarkable spectral-spatial classification performances. Among them, Extended Multi-Attribute Profiles (EMAP) and Dense Convolutional Neural Network (DCNN) are considered as robust and powerful approaches such as the work in this paper is based on these two techniques for the feature extraction stage and used in two combined manners and constructing the EMAP-DCNN frame. The experiments were conducted on two popular datasets: “Indian Pines” and “Huston” hyperspectral datasets. Experimental results demonstrate that the two proposed approaches of the EMAP-DCNN frame denoted EMAP-DCNN 1, EMAP-DCNN 2 provide competitive performances compared with some state-of-the-art spectral-spatial classification methods based on deep learning.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 204 ◽  
Author(s):  
Chenming Li ◽  
Yongchang Wang ◽  
Xiaoke Zhang ◽  
Hongmin Gao ◽  
Yao Yang ◽  
...  

With the development of high-resolution optical sensors, the classification of ground objects combined with multivariate optical sensors is a hot topic at present. Deep learning methods, such as convolutional neural networks, are applied to feature extraction and classification. In this work, a novel deep belief network (DBN) hyperspectral image classification method based on multivariate optical sensors and stacked by restricted Boltzmann machines is proposed. We introduced the DBN framework to classify spatial hyperspectral sensor data on the basis of DBN. Then, the improved method (combination of spectral and spatial information) was verified. After unsupervised pretraining and supervised fine-tuning, the DBN model could successfully learn features. Additionally, we added a logistic regression layer that could classify the hyperspectral images. Moreover, the proposed training method, which fuses spectral and spatial information, was tested over the Indian Pines and Pavia University datasets. The advantages of this method over traditional methods are as follows: (1) the network has deep structure and the ability of feature extraction is stronger than traditional classifiers; (2) experimental results indicate that our method outperforms traditional classification and other deep learning approaches.


2021 ◽  
Vol 13 (6) ◽  
pp. 1143
Author(s):  
Yinghui Quan ◽  
Yingping Tong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Wenjiang Huang ◽  
...  

The fusion of the hyperspectral image (HSI) and the light detecting and ranging (LiDAR) data has a wide range of applications. This paper proposes a novel feature fusion method for urban area classification, namely the relative total variation structure analysis (RTVSA), to combine various features derived from HSI and LiDAR data. In the feature extraction stage, a variety of high-performance methods including the extended multi-attribute profile, Gabor filter, and local binary pattern are used to extract the features of the input data. The relative total variation is then applied to remove useless texture information of the processed data. Finally, nonparametric weighted feature extraction is adopted to reduce the dimensions. Random forest and convolutional neural networks are utilized to evaluate the fusion images. Experiments conducted on two urban Houston University datasets (including Houston 2012 and the training portion of Houston 2017) demonstrate that the proposed method can extract the structural correlation from heterogeneous data, withstand a noise well, and improve the land cover classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document