Advanced distance protection scheme for long Transmission lines in Electric Power systems using multiple classified ANFIS networks

Author(s):  
T. S. Kamel ◽  
M. A. Moustafa Hassan ◽  
A. El- Morshedy
2021 ◽  
Author(s):  
Sergey Goremykin

The textbook describes the main issues of the theory of relay protection and automation of electric power systems. The structure and functional purpose of protection devices and automation of power transmission lines of various configurations, synchronous generators, power transformers, electric motors and individual electrical installations are considered. For each of the types of protection of the above objects, the structure, the principle of operation, the order of selection of settings are given, the advantages and disadvantages are evaluated, indicating the scope of application. The manual includes material on complete devices based on semiconductor and microprocessor element bases. The progressive use of such devices (protection of the third and fourth generations) is appropriate and effective due to their significant advantages. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students in the areas of training 13.03.02 "Electric power and electrical engineering" (profile "Power supply", discipline "Relay protection and automation of electric power systems") and 35.03.06 "Agroengineering" (profile "Power supply and electrical equipment of agricultural enterprises", discipline "Relay protection of electrical equipment of agricultural objects"), as well as for graduate students and specialists engaged in the field of electrification and automation of industrial and agrotechnical objects.


2019 ◽  
Vol 114 ◽  
pp. 03006
Author(s):  
Natalia Aizenberg ◽  
Sergey Perzhabinsky

We propose the new model of generation adequacy optimization. Optimization criterion is a maximum of social welfare. Social welfare consists of profits of generating companies, consumer surplus, costs for development and servicing of electrical grids. In the article we present a review of existed methods of adequacy level management in liberalized electric power systems. Optimization of adequacy level is based on analysis of variants of development of the electric power system. For adequacy analysis of the variants of development we multiple estimate the electricity shortage in random hours of the system work. Analysis of the system work in every random hour is realized in two stages. At first we define values of equilibrium electricity demand in every system node and equilibrium price of electricity according to Cournot model. We consider only electricity market in the model. At the next stage we simulate failures of power generating equipment and transmission lines. The electricity shortage in a current hour is estimated on the second stage. After a whole cycle of analysis, we compute reliability indexes and profits of generating companies. Profits of generating companies are depended on the reliability of the electricity supply. The simulations of random values are based on Monte Carlo method.


2018 ◽  
Vol 58 ◽  
pp. 01010 ◽  
Author(s):  
Nikolay Belyaev ◽  
Andrey Egorov ◽  
Nikolay Korovkin ◽  
Vladimir Chudny

The present report deals with economic issues of selecting means ensuring the capacity adequacy of electric power systems. Cost analysis of various engineering measures ensuring the capacity adequacy has been performed, they are as follows: construction of margin generating capacities, erection of new power transmission lines or increase of transmission capacity of existing power lines. The cost-based analysis has been conducted following investment programs and regulatory acts in place. Recommendations on developing computational models of power systems have been given based on the results obtained in order to assess the capacity adequacy indices with account made for the cost of various engineering measures to be taken for their improvement.


2015 ◽  
Vol 792 ◽  
pp. 293-299 ◽  
Author(s):  
Evgeny Shishkov ◽  
Valery Goldstein ◽  
Ivan Krivihin

Ultra High-Voltage Overhead Lines (UHV OHL) currently are successfully applied for solving two problems. The first case is powerful interconnection of two or more electric power systems. The second one is transition of significant power flows from generation areas to consuming areas – densely populated urban agglomerations and industrial centers. Longitudinal compensation installations are integral part of long-distance UHV OHL. The possibility of designing self-compensated OHL is considered in the paper.


2018 ◽  
Vol 58 ◽  
pp. 02020 ◽  
Author(s):  
Natalia Aizenberg ◽  
Sergey Perzhabinsky

We present a new model of adequacy optimization of electric power systems under market conditions in the article. Optimization is realized by a criteria of maximum of social welfare. Social welfare includes profits of generating companies according penalties of unreliable electricity supply, consumer surplus, costs for development and servicing of electricity grids. Adequacy analysis of variants of development of electric power system is based on multiple estimation of electricity shortage in a random hour of system work. We analyze system work in each of a random hour in two stages. For the first stage we define equilibrium electricity demand in each system node and equilibrium price of electricity according to Cournot model. For the next stage failures of power generating equipment and transmission lines are simulated. We also estimate of electricity shortage in a current hour on the second stage. Reliability indexes and profits of generating companies are formed after a whole cycle of computations. Values of a profit are depended on reliability of electricity supply. Simulation of random values is carried out by the Monte Carlo method.


2015 ◽  
Vol 775 ◽  
pp. 373-377
Author(s):  
John Morales ◽  
Julio Montesdeoca ◽  
Guillermo Guidi

It is clear that lightning strokes produce overvoltages on Transmission Lines (TLs), which can be higher that the Basic Insulator Level (BIL), generating a fault or short circuit. Thus, in order to adequately analyze when a lightning hits on a TL, it is necessary to simulate different elements corresponding to Electric Power Systems (EPSs) as real as possible. In this context, transmission towers are considered crucial parameters in lightning studies, which must be correctly selected and simulated in order to consider reflected voltage waveforms from cross arms. Based on the above said, this paper presents a comparative study corresponding to the transmission tower simulation using two models. The first uses inductances, and the second uses distributed parameters impedances characterized by their impedance and travel time. This paper presents voltage variations that exist in each phase, using different lightning features. Alternative Transients Program (ATP) is used to simulate the TL model considering different lightning currents and the two tower models. Results show that the impedance model analyze reflected waveforms, while that the inductance model does not analyze this issue.


Author(s):  
E. M. Farhadzadeh ◽  
A. Z. Muradaliyev ◽  
S. A. Abdullayeva ◽  
A. A. Nazarov

Basic EPS objects, which service life has exceeded normative value, increasingly affect – every year to a greater extent – the efficiency of overall performance. This manifests itself in increase of a number of automatic emergency shutdowns, an amount and complexities of accident-hazardous defects. After the expiration of the standard service life, there is a special need for a quantitative assessment of reliability and safety of an object. It is recommended to organize the operation, maintenance and repair of these objects according to their technical condition, and since it determines the reliability and safety of the object, these properties should be taken into account more fully. The relevant recommendations in electric power systems are implemented at a qualitative level, intuitively, according to the operating experience. There are neither quantitative evaluations nor methodology for their performance. Therefore, a method and algorithm of quantitative assessment of integral indicators of reliability and safety of operation of thermal power units of thermal power plants as concentrated objects of continuous operation were previously analyzed by the authors. The present paper examines distributed objects of continuous operation, viz. overhead power transmission lines with a voltage of 110 kV and higher, whose service life exceeds the standard value. Attention is paid to the issues of quantitative assessment of the degree of aging for a set of overhead power transmission lines, classification of these lines to identify the most significant classes and methodology for assessing the difference in the degree of aging when classifying them according to specified types of signs (for example, the difference in the degree of aging of overhead power transmission lines of grid enterprises of electric power systems). It is shown that it unacceptable to use the estimates of the relative number of overhead power transmission lines, the service life of which exceeds the calculated one, for comparison since it causes a great risk of an erroneous decision. The methodology and algorithm of methodological support of the management of electric power systems and grid enterprises in the organization of operation, maintenance and repair have been developed.


Sign in / Sign up

Export Citation Format

Share Document