Study On the Seismic Response of the Extradosed Cable-Stayed Bridges with Continuous System for Different Seismic-Isolated Design Scheme

Author(s):  
Yanfang Liu ◽  
Wenxue Zhang ◽  
Weigang Bao
2021 ◽  
pp. 875529302110513
Author(s):  
Eleftheria Efthymiou ◽  
Alfredo Camara

The definition of the spatial variability of the ground motion (SVGM) is a complex and multi-parametric problem. Its effect on the seismic response of cable-stayed bridges is important, yet not entirely understood to date. This work examines the effect of the SVGM on the seismic response of cable-stayed bridges by means of the time delay of the ground motion at different supports, the loss of coherency of the seismic waves, and the incidence angle of the seismic waves. The focus herein is the effect of the SVGM on cable-stayed bridges with various configurations in terms of their length and of design parameters such as the pylon shape and the pylon–cable system configuration. The aim of this article is to provide general conclusions that are applicable to a wide range of canonical cable-stayed bridges and to contribute to the ongoing effort to interpret and predict the effect of the SVGM in long structures. This work shows that the effect of the SVGM on the seismic response of cable-stayed bridges varies depending on the pylon shape, height, and section dimensions; on the cable-system configuration; and on the response quantity of interest. Furthermore, the earthquake incidence angle defines whether the SVGM is important to the seismic response of the cable-stayed bridges. It is also confirmed that the SVGM excites vibration modes of the bridges that do not contribute to their seismic response when identical support motion is considered.


1995 ◽  
Vol 22 (5) ◽  
pp. 1001-1020 ◽  
Author(s):  
Raju Tuladhar ◽  
Walter H. Dilger ◽  
Mamdouh M. Elbadry

In cable-stayed bridges, modelling the cables is of particular significance for the seismic behaviour of the structure. The common practice of modelling a cable by a single truss element is inadequate for seismic response calculations because it essentially precludes the lateral cable vibration modes. The present paper studies the influence of cable vibrations on the seismic response of cable-stayed bridges. Three bridge examples with different spans and properties were used. Cable vibrations are accounted for through the use of multiple links for each cable. Cable vibration effects are found to be significant for seismic response calculations, particularly when the cable fundamental frequencies are overlapping with the first few frequencies of the bridge. Parametric studies are conducted with regard to the number of links per cable, the effect of the modulus of elasticity of the cables, and different earthquakes on the bridge response. Modelling the cables by two links per cable such that at least the fundamental modes of the cable vibrations are represented can significantly account for the effect of cable vibrations. It is also observed that the equivalent modulus method cannot in any way account for the cable vibration effects. Key words: cable vibration, dynamic analysis, equivalent modulus, multiple links, seismic response, cable-stayed bridge.


2003 ◽  
Vol 129 (7) ◽  
pp. 857-872 ◽  
Author(s):  
S. J. Dyke ◽  
J. M. Caicedo ◽  
G. Turan ◽  
L. A. Bergman ◽  
S. Hague

2020 ◽  
pp. 2150006
Author(s):  
SIBO MENG ◽  
YANG DING

In this paper, a stochastic dynamic analysis method for cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is established based on the pseudo-excitation method. The Monte Carlo method is used to analyze the influence of excitation nonlinearity on the bridge structure response, and the applicability of this method is verified. Stochastic response characteristic of coastal cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is studied. The influence of water–structure interaction on the stochastic seismic response of main components of the cable-stayed bridge is described, and the influence of key parameters is analyzed. The results show that the influence of excitation nonlinearity on the response of the cable-stayed bridge can be neglected. A greater energy input caused by the rigid additional mass of the hydrodynamic pressure is the reason for the increasing of the seismic response. The influence of stochastic response of the underwater structure of the tower is changed with the site conditions. For the ground motion acceleration input energy being distributed in the high-frequency domain, the water–structure interaction has a greater effect on stochastic seismic response of the underwater structure of the tower. The influence of water–structure interaction on the stochastic seismic response of the underwater structure of the cable-stayed bridge increases with the increasing of the wave height and water depth.


2011 ◽  
Vol 2 (4) ◽  
pp. 337-356 ◽  
Author(s):  
Madhav Bhagwat ◽  
Saptarshi Sasmal ◽  
B. Novak ◽  
A. Upadhyay

2020 ◽  
Vol 18 (14) ◽  
pp. 6375-6403
Author(s):  
Chao Zhang ◽  
Jian-bing Lu ◽  
Hong-yu Jia ◽  
Zhi-chao Lai ◽  
Xu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document