Analyzing Artificial Neural Networks and Dynamic Time Warping for spoken keyword recognition under transient noise conditions

Author(s):  
Paulo Lopez-Meyer ◽  
Hector Cordourier-Maruri ◽  
Arturo Quinto-Martinez ◽  
Omesh Tickoo
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4040
Author(s):  
Jamer Jiménez Mares ◽  
Loraine Navarro ◽  
Christian G. Quintero M. ◽  
Mauricio Pardo

The electrical sector needs to study how energy demand changes to plan the maintenance and purchase of energy assets properly. Prediction studies for energy demand require a high level of reliability since a deviation in the forecasting demand could affect operation costs. This paper proposed a short-term forecasting energy demand methodology based on hierarchical clustering using Dynamic Time Warp as a similarity measure integrated with Artificial Neural Networks. Clustering was used to build the typical curve for each type of day, while Artificial Neural Networks handled the weather sensibility to correct a preliminary forecasting curve obtained in the clustering stage. A statistical analysis was carried out to identify those significant factors in the prediction model of energy demand. The performance of this proposed model was measured through the Mean Absolute Percentage Error (MAPE). The experimental results show that the three-stage methodology was able to improve the MAPE, reaching values as good as 2%.


2017 ◽  
Vol 2 (3) ◽  
pp. 145-152 ◽  
Author(s):  
Ralf Stauder ◽  
Daniel Ostler ◽  
Thomas Vogel ◽  
Dirk Wilhelm ◽  
Sebastian Koller ◽  
...  

AbstractDifferent components of the newly defined field of surgical data science have been under research at our groups for more than a decade now. In this paper, we describe our sensor-driven approaches to workflow recognition without the need for explicit models, and our current aim is to apply this knowledge to enable context-aware surgical assistance systems, such as a unified surgical display and robotic assistance systems. The methods we evaluated over time include dynamic time warping, hidden Markov models, random forests, and recently deep neural networks, specifically convolutional neural networks.


1995 ◽  
Vol 06 (01) ◽  
pp. 79-89 ◽  
Author(s):  
CHINCHUAN CHIU ◽  
MICHAEL A. SHANBLATT

This paper presents a human-like dynamic programming neural network method for speech recognition using dynamic time warping. The networks are configured, much like human’s, such that the minimum states of the network’s energy function represent the near-best correlation between test and reference patterns. The dynamics and properties of the neural networks are analytically explained. Simulations for classifying speaker-dependent isolated words, consisting of 0 to 9 and A to Z, show that the method is better than conventional methods. The hardware implementation of this method is also presented.


Sign in / Sign up

Export Citation Format

Share Document