Compressive sensing approach for microwave imaging application

Author(s):  
Syahrul Ramdani ◽  
Basari
Author(s):  
Lulu Wang ◽  
Hu Peng

Microwave imaging (MI) has been considered as an alternative way to X-ray mammography for breast cancer detection. This paper presents a compressive sensing based holographic microwave imaging (CS-HMI) approach for diagnosing of breast cancer. A numerical imaging system is developed to validate the proposed CS-HMI approach, which includes a realistic human breast phantom and measurement model. Small breast tumour can be detected in the reconstructed CS-HMI image via Split Bregman (SB) with using 10% measurement data. Simulation and experimental results show that CS-HMI has the ability to produce high quality image by using significantly less measurement data and operation time.


2013 ◽  
Vol 64 (3) ◽  
Author(s):  
Rashidah Che Yob ◽  
Norhudah Seman

This article presents the reflection coefficient measurement by using a wideband multi-port reflectometer for microwave imaging application of human head. The configuration of the proposed wideband multi-port reflectometer is formed by passive components, which are four couplers and two power dividers operating from 1 to 6 GHz. The investigation is successfully done through simulation using the Agilent’s Advanced Design Systems (ADS) software and practical measurement in laboratory. An error correction method with three standards of match, open and short load is then applied to the constructed wideband multi-port reflectometer to remove its imperfect characteristics. The wideband characteristics of proposed reflectometer are analyzed and verified across the designated frequency band.  Its operation in reflection coefficient is tested with the chosen device under test (DUT).


2017 ◽  
Vol 11 (6) ◽  
pp. 770-778 ◽  
Author(s):  
M.Z. Mahmud ◽  
Mohammad T. Islam ◽  
M. Samsuzzaman ◽  
Salehin Kibria ◽  
Norbahiah Misran

2015 ◽  
Vol 781 ◽  
pp. 608-611 ◽  
Author(s):  
Mohd Sollehudin Md Said ◽  
Norhudah Seman ◽  
Noor Redzuan Sulaiman ◽  
Tharek Abd Rahman

This article presents a human head phantom characterization based on the study of its electrical properties across 1 to 6 GHz. The study focuses on the grey matter, white matter, cerebral spinal fluid (CSF), blood and skin of human head. Through the investigation and study of the human head characteristics, its phantom can be modeled using simple and common materials, which are gelatin, water and sugar. The electrical properties of the chosen mixtures of materials mimicking the electrical properties of human head are measured using special dielectric probe connected to a vector network analyser (VNA). This human head phantom later can be applied in the microwave imaging system for a further study on the health monitoring of human body.


Sign in / Sign up

Export Citation Format

Share Document