Model-based user support: design principles and an example

Author(s):  
G.A. Sundstrom
Author(s):  
Kazuya Oizumi ◽  
Akio Ito ◽  
Kazuhiro Aoyama

AbstractSystem design at the early stage of design plays an important role in design process. Model based systems engineering is seen as a prominent approach for this challenge. System design can be explored by means of system simulation. However, as the system is a complex system, system model tends to have high level of abstraction. Therefore, the models cannot depict every details of the system, which makes optimization unreasonable.Furthermore, at the early stage of design, there are many uncertainties such as success of technological developments. By properly incorporating uncertain factors in system design, the system can be tolerant. Currently system design is conducted by experienced experts. However, for more complex system, it would be difficult to continue the current practice. Therefore, a method to support design team to make decision in system design is needed.This paper proposes a computational support for the system design. Design constraints, which seems the core information that design team wants at system design, are modeled. By visualizing constraints quantitatively and intuitively, the proposed method can support design team to conduct system design and design study.


2019 ◽  
Vol 1 (1) ◽  
pp. 228-244
Author(s):  
Christian Kohls

AbstractAs design thinking becomes more and more important in higher education, we need to think about ways to enable educators and students to learn about the concepts and apply them to their own projects. One approach is to create hybrid learning spaces with tools that support design thinking and offer affordances for the various methods, ways of working and thinking. Hybridity dissolves existing dichotomies such as physical-digital, formal-informal, learning-teaching and individual-collective. This article introduces design principles and patterns to develop such spaces for university campuses. We will describe how we identified, applied and tested them. Based on these findings we can provide recommendations for planning new hybrid spaces for design thinking at other universities.


Author(s):  
Liang Zhu ◽  
David Kazmer

A dynamic, model-based decision making framework is described to support design and manufacture of engineered products. While the framework is inspired by the multiple stages of Quality Function Deployment, the presented framework differs by through the use of quantitative models relating engineering decisions to performance measures. The number of variables, model behavior, and model fidelity are intended to evolve as the design progresses. The Extensive Simplex Method is utilized to identify the feasible space of dynamic model and reveal trade-offs between the decision variables. The methods are demonstrated by various applications of product design and manufacturing process, including the case study of a mechanical actuator design. While promising, further research work is required to extend the methods to non-linear and probabilistic models as well as user interface design.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document