A real-time on-board ship targets detection method for optical remote sensing satellite

Author(s):  
Yu Ji-yang ◽  
Huang Dan ◽  
Wang Lu-yuan ◽  
Guo Jian ◽  
Wang Yan-hua
2020 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Ting Nie ◽  
Xiyu Han ◽  
Bin He ◽  
Xiansheng Li ◽  
Hongxing Liu ◽  
...  

Ship detection in panchromatic optical remote sensing images is faced with two major challenges, locating candidate regions from complex backgrounds quickly and describing ships effectively to reduce false alarms. Here, a practical method was proposed to solve these issues. Firstly, we constructed a novel visual saliency detection method based on a hyper-complex Fourier transform of a quaternion to locate regions of interest (ROIs), which can improve the accuracy of the subsequent discrimination process for panchromatic images, compared with the phase spectrum quaternary Fourier transform (PQFT) method. In addition, the Gaussian filtering of different scales was performed on the transformed result to synthesize the best saliency map. An adaptive method based on GrabCut was then used for binary segmentation to extract candidate positions. With respect to the discrimination stage, a rotation-invariant modified local binary pattern (LBP) description was achieved by combining shape, texture, and moment invariant features to describe the ship targets more powerfully. Finally, the false alarms were eliminated through SVM training. The experimental results on panchromatic optical remote sensing images demonstrated that the presented saliency model under various indicators is superior, and the proposed ship detection method is accurate and fast with high robustness, based on detailed comparisons to existing efforts.


2020 ◽  
Vol 12 (24) ◽  
pp. 4029
Author(s):  
Sakib Kabir ◽  
Larry Leigh ◽  
Dennis Helder

Over the past decade, number of optical Earth-observing satellites performing remote sensing has increased substantially, dramatically increasing the capability to monitor the Earth. The quantity of remote sensing satellite increase is primarily driven by improved technology, miniaturization of components, reduced manufacturing, and launch cost. These satellites often lack on-board calibrators that a large satellite utilizes to ensure high quality (radiometric, geometric, spatial quality, etc.) scientific measurement. To address this issue, this work presents “best” vicarious image quality assessment and improvement techniques for those kinds of optical satellites which lack an on-board calibration system. In this article, image quality categories have been explored, and essential quality parameters (absolute and relative calibration, aliasing, etc.) have been identified. For each of the parameters, appropriate characterization methods are identified along with their specifications or requirements. In cases of multiple methods, recommendations have been made based-on the strengths and weaknesses of each method. Furthermore, processing steps have been presented, including examples. Essentially, this paper provides a comprehensive study of the criteria that need to be assessed to evaluate remote sensing satellite data quality, and the best vicarious methodologies to evaluate identified quality parameters such as coherent noise and ground sample distance.


2017 ◽  
Vol 9 (3) ◽  
pp. 280 ◽  
Author(s):  
Fang Xu ◽  
Jinghong Liu ◽  
Mingchao Sun ◽  
Dongdong Zeng ◽  
Xuan Wang

Sign in / Sign up

Export Citation Format

Share Document