A hierarchical object detection method in large-scale optical remote sensing satellite imagery using saliency detection and CNN

2021 ◽  
Vol 42 (8) ◽  
pp. 2827-2847
Author(s):  
Zhina Song ◽  
Haigang Sui ◽  
Li Hua
2020 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Ting Nie ◽  
Xiyu Han ◽  
Bin He ◽  
Xiansheng Li ◽  
Hongxing Liu ◽  
...  

Ship detection in panchromatic optical remote sensing images is faced with two major challenges, locating candidate regions from complex backgrounds quickly and describing ships effectively to reduce false alarms. Here, a practical method was proposed to solve these issues. Firstly, we constructed a novel visual saliency detection method based on a hyper-complex Fourier transform of a quaternion to locate regions of interest (ROIs), which can improve the accuracy of the subsequent discrimination process for panchromatic images, compared with the phase spectrum quaternary Fourier transform (PQFT) method. In addition, the Gaussian filtering of different scales was performed on the transformed result to synthesize the best saliency map. An adaptive method based on GrabCut was then used for binary segmentation to extract candidate positions. With respect to the discrimination stage, a rotation-invariant modified local binary pattern (LBP) description was achieved by combining shape, texture, and moment invariant features to describe the ship targets more powerfully. Finally, the false alarms were eliminated through SVM training. The experimental results on panchromatic optical remote sensing images demonstrated that the presented saliency model under various indicators is superior, and the proposed ship detection method is accurate and fast with high robustness, based on detailed comparisons to existing efforts.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gong Cheng ◽  
Chunbo Lang ◽  
Maoxiong Wu ◽  
Xingxing Xie ◽  
Xiwen Yao ◽  
...  

Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.


2021 ◽  
Vol 30 ◽  
pp. 1305-1317
Author(s):  
Qijian Zhang ◽  
Runmin Cong ◽  
Chongyi Li ◽  
Ming-Ming Cheng ◽  
Yuming Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document