A Highly Linear Multi-Clock Combining Phase Interpolator Insensitive to Interpolation Error

Author(s):  
Kai Sun ◽  
Gang Zhang
Author(s):  
Fuqiang Di ◽  
Minqing Zhang ◽  
Yingnan Zhang ◽  
Jia Liu

A novel reversible data hiding algorithm for encrypted image based on interpolation error expansion is proposed. The proposed method is an improved version of Shiu' s. His work does not make full use of the correlation of the neighbor pixels and some additional side information is needed. The proposed method adopts the interpolation prediction method to fully exploit the pixel correlation and employ the Paillier public key encryption method. The algorithm is reversible. In the proposed method, less side information is demanded. The experiment has verified the feasibility and effectiveness of the proposed method, and the better embedding performance can be obtained, compared with some existing RDHEI-P methods. Specifically, the final embedding capacity can be up to 0.74 bpp (bit per pixel), while the peak signal-to-noise ratio (PSNR) for the marked image Lena is 35 dB. This is significantly higher than Shiu's method which is about 0.5 bpp.


2018 ◽  
Vol 63 (3) ◽  
pp. 237-257 ◽  
Author(s):  
Ali Khademi ◽  
Sergey Korotov ◽  
Jon Eivind Vatne
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6824
Author(s):  
Jae-Soub Han ◽  
Tae-Hyeok Eom ◽  
Seong-Wook Choi ◽  
Kiho Seong ◽  
Dong-Hyun Yoon ◽  
...  

Sampling-based PLLs have become a new research trend due to the possibility of removing the frequency divider (FDIV) from the feedback path, where the FDIV increases the contribution of in-band noise by the factor of dividing ratio square (N2). Between two possible sampling methods, sub-sampling and reference-sampling, the latter provides a relatively wide locking range, as the slower input reference signal is sampled with the faster VCO output signal. However, removal of FDIV makes the PLL not feasible to implement fractional-N operation based on varying divider ratios through random sequence generators, such as a Delta-Sigma-Modulator (DSM). To address the above design challenges, we propose a reference-sampling-based calibration-free fractional-N PLL (RSFPLL) with a phase-interpolator-linked sampling clock generator (PSCG). The proposed RSFPLL achieves fractional-N operations through phase-interpolator (PI)-based multi-phase generation instead of a typical frequency divider or digital-to-time converter (DTC). In addition, to alleviate the power burden arising from VCO-rated sampling, a flexible mask window generation method has been used that only passes a few sampling clocks near the point of interest. The prototype PLL system is designed with a 65 nm CMOS process with a chip size of 0.42 mm2. It achieves 322 fs rms jitter, −240.7 dB figure-of-merit (FoM), and −44.06 dBc fractional spurs with 8.17 mW power consumption.


Author(s):  
Anders Jakobsson ◽  
Adriana Serban ◽  
Shaofang Gong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document