clock and data recovery
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yue Li

This dissertation investigates adaptive decision feedback equalizers for high-speed serial data links.<div>An adaptive data-transition decision feedback equalizer (DT-DFE) was developed. The DT-DFE boosts the eye-opening of the high-frequency components of data without attenuating their low-frequency counterparts. Reference voltages were obtained by transmitting consecutive 1s and 0s and measuring the output of the continuous-time linear equalizer using a pair of successive approximation register analog-to-digital converters in a training phase. It uses loop unrolling to detect data transitions, activate tap-tuning, launch DFE, and combat timing constraints. The performance of the DT-DFE and its advantages over commonly used data-state DFE were validated using the schematic-level simulation results of 5 Gbps backplane links.<br></div><div>A new adaptive DT-DFE with edge-emphasis (EE) taps and raised references was developed. Loop-unrolling was further developed for DT-DFE with EE-taps. The reference voltages were raised beyond that set by the low-frequency components of data to increase vertical eye-opening. Clock and data recovery was performed using 4x oversampling. The DT-DFE was validated using the schematiclevel simulation results of 10 Gbps backplane links.<br></div><div>A pre-skewed bi-directional gated delay line (BDGDL) bang-bang frequency difference-to-digital converter and a BDGDL integrating frequency difference-todigital converter (iFDDC) were proposed for clock and data recovery. Both frequency difference detectors feature all-digital realization, low power consumption, and high-speed operation. The built-in integration of iFDDC results in a zero static frequency error and the first-order noise-shaping of the quantization errors of the BDGDL and digitally-controlled oscillators. Their effectiveness was validated using schematic-level simulation results of 5-GHz frequency-locked loops.<br></div><div>All systems validating the proposed adaptive DFE and frequency-difference detectors were designed in TSMC’s 65 nm CMOS technology and analyzed using Spectre from Cadence Design Systems. <br></div>


2021 ◽  
Author(s):  
Yue Li

This dissertation investigates adaptive decision feedback equalizers for high-speed serial data links.<div>An adaptive data-transition decision feedback equalizer (DT-DFE) was developed. The DT-DFE boosts the eye-opening of the high-frequency components of data without attenuating their low-frequency counterparts. Reference voltages were obtained by transmitting consecutive 1s and 0s and measuring the output of the continuous-time linear equalizer using a pair of successive approximation register analog-to-digital converters in a training phase. It uses loop unrolling to detect data transitions, activate tap-tuning, launch DFE, and combat timing constraints. The performance of the DT-DFE and its advantages over commonly used data-state DFE were validated using the schematic-level simulation results of 5 Gbps backplane links.<br></div><div>A new adaptive DT-DFE with edge-emphasis (EE) taps and raised references was developed. Loop-unrolling was further developed for DT-DFE with EE-taps. The reference voltages were raised beyond that set by the low-frequency components of data to increase vertical eye-opening. Clock and data recovery was performed using 4x oversampling. The DT-DFE was validated using the schematiclevel simulation results of 10 Gbps backplane links.<br></div><div>A pre-skewed bi-directional gated delay line (BDGDL) bang-bang frequency difference-to-digital converter and a BDGDL integrating frequency difference-todigital converter (iFDDC) were proposed for clock and data recovery. Both frequency difference detectors feature all-digital realization, low power consumption, and high-speed operation. The built-in integration of iFDDC results in a zero static frequency error and the first-order noise-shaping of the quantization errors of the BDGDL and digitally-controlled oscillators. Their effectiveness was validated using schematic-level simulation results of 5-GHz frequency-locked loops.<br></div><div>All systems validating the proposed adaptive DFE and frequency-difference detectors were designed in TSMC’s 65 nm CMOS technology and analyzed using Spectre from Cadence Design Systems. <br></div>


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2741
Author(s):  
Stefan Biereigel ◽  
Szymon Kulis ◽  
Paulo Moreira ◽  
Alexander Kölpin ◽  
Paul Leroux ◽  
...  

This paper presents the first fully integrated radiation-tolerant All-Digital Phase-Locked Loop (PLL) and Clock and Data Recovery (CDR) circuit for wireline communication applications. Several radiation hardening techniques are proposed to achieve state-of-the-art immunity to Single-Event Effects (SEEs) up to 62.52/mg as well as tolerance to the Total Ionizing Dose (TID) exceeding 1.5Grad. The LC Digitally Controlled Oscillator (DCO) is implemented without MOS varactors, avoiding the use of a highly SEE sensitive circuit element. The circuit is designed to operate at reference clock frequencies from 40–320 or at data rates from 40Mbps–320Mbps and displays a jitter performance of 520 with a power dissipation of only 11 and an FOM of −235 .


2021 ◽  
Vol 23 (11) ◽  
pp. 184-197
Author(s):  
Pawan Srivastava ◽  
◽  
Dr. Ram Chandra Singh Chauhan ◽  

A novel phase frequency detector is designed which is made up of 16 transistors whereas conventional is of 48 transistors. This paper also presented the design of charge pump circuit and current starved VCO (CSVCO). These are the critical blocks that are widely used for applications like clock and data recovery circuit, PLL, frequency synthesizer. The proposed PFD eliminates the reset circuit using pass transistor logic and operates effectively at higher frequencies. The circuits are designed using Cadence Virtuoso v6.1 in 45nm CMOS technology having supply voltage 1V. It was found that the power consumption of PFD is 138.2 nW which is significantly lesser than other designs. CSVCO also analysed at operating frequency of 10 MHz to give output oscillation frequency of 1.119 GHz with power dissipation of 18.91 μW. Corner analysis done for both the PFD and CSVCO for various process variations. Monte Carlo analysis also done for the proposed PFD and presented CSVCO to test the circuit reliableness.


Author(s):  
Tao Liu ◽  
Fangxu Lv ◽  
Bin Liang ◽  
Heming Wang ◽  
Jianye Wang ◽  
...  

2021 ◽  
Author(s):  
Bo Liu ◽  
Zongmin Wang ◽  
Tieliang Zhang ◽  
Lei Zhang ◽  
Song Yang ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1888
Author(s):  
Tao Liu ◽  
Tiejun Li ◽  
Fangxu Lv ◽  
Bin Liang ◽  
Xuqiang Zheng ◽  
...  

In this paper, an accurate linear model of the Mueller-Muller phase detector (MMPD)-based clock and data recovery circuit (MM-CDR) is proposed, which analyzes several critical points of the MM-CDR including the linearization of the MMPD and the gain of the voter. Using our technique, the jitter between the recovery clock and the input data can be estimated with a sub-picosecond accuracy, as demonstrated in the simulation results of a 56 Gb/s quarter-rate MM-CDR implemented in 28 nm CMOS.


Sign in / Sign up

Export Citation Format

Share Document