Machine learning based adaptive flow classification for optically interconnected data centers

Author(s):  
Nicolaas Viljoen ◽  
Houman Rastegarfar ◽  
Mingwei Yang ◽  
John Wissinger ◽  
Madeleine Glick
2019 ◽  
Vol 16 (3) ◽  
pp. 950-964 ◽  
Author(s):  
Johannes Zerwas ◽  
Patrick Kalmbach ◽  
Stefan Schmid ◽  
Andreas Blenk

Author(s):  
Deepika T. ◽  
Prakash P.

The flourishing development of the cloud computing paradigm provides several services in the industrial business world. Power consumption by cloud data centers is one of the crucial issues for service providers in the domain of cloud computing. Pursuant to the rapid technology enhancements in cloud environments and data centers augmentations, power utilization in data centers is expected to grow unabated. A diverse set of numerous connected devices, engaged with the ubiquitous cloud, results in unprecedented power utilization by the data centers, accompanied by increased carbon footprints. Nearly a million physical machines (PM) are running all over the data centers, along with (5 – 6) million virtual machines (VM). In the next five years, the power needs of this domain are expected to spiral up to 5% of global power production. The virtual machine power consumption reduction impacts the diminishing of the PM’s power, however further changing in power consumption of data center year by year, to aid the cloud vendors using prediction methods. The sudden fluctuation in power utilization will cause power outage in the cloud data centers. This paper aims to forecast the VM power consumption with the help of regressive predictive analysis, one of the Machine Learning (ML) techniques. The potency of this approach to make better predictions of future value, using Multi-layer Perceptron (MLP) regressor which provides 91% of accuracy during the prediction process.


Author(s):  
Alhamza Alalousi ◽  
Rozmie Razif ◽  
Mosleh AbuAlhaj ◽  
Mohammed Anbar ◽  
Shahrul Nizam

Unsupervised leaning is a popular method for classify unlabeled dataset i.e. without prior knowledge about data class. Many of unsupervised learning are used to inspect and classify network flow. This paper presents in-deep study for three unsupervised classifiers, namely: K-means, K-nearest neighbor and Expectation maximization. The methodologies and how it’s employed to classify network flow are elaborated in details. The three classifiers are evaluated using three significant metrics, which are classification accuracy, classification speed and memory consuming. The K-nearest neighbor introduce better results for accuracy and memory; while K-means announce lowest processing time.


Sign in / Sign up

Export Citation Format

Share Document