A low noise current-mode readout circuit for CMOS image sensing applications

Author(s):  
T. Das ◽  
P.R. Mukund
1992 ◽  
Vol 2 (3) ◽  
pp. 179-195 ◽  
Author(s):  
Tongtod Vanisri ◽  
Chris Toumazou
Keyword(s):  

1992 ◽  
Vol 03 (03n04) ◽  
pp. 297-336 ◽  
Author(s):  
CHRISTOFER TOUMAZOU

This paper presents a tutorial review of the current-mode approach to analogue electronic circuit design, in particular some of the author’s own research over the past decade covering the development of a new generation of technology specific current-mode analogue signal processing. In this paper various technologies are represented with key current-mode building blocks ranging from current-conveyors, current-feedback operational amplifiers, linear transconductance amplifiers to applications ranging from current-mode active filters to low-noise current-mode optical preamplifiers. Advantages, future trends and perspectives of the current-mode approach are highlighted throughout the paper. The theoretical basis for many of the examples dates back many years but it is only recently due to advances in process technology that many of these techniques have now become a practical reality.


2020 ◽  
Vol 10 (3) ◽  
pp. 23
Author(s):  
Wei Wang ◽  
Sameer Sonkusale

Designing low-noise current readout circuits at high speed is challenging. There is a need for preamplification stages to amplify weak input currents before being processed by conventional integrator based readout. However, the high current gain preamplification stage usually limits the dynamic range. This article presents a 140 dB input dynamic range low-noise current readout circuit with a noise floor of 10 fArms/sq(Hz). The architecture uses a programmable bidirectional input current gain stage followed by an integrator-based analog-to-pulse conversion stage. The programmable current gains setting enables one to achieve higher overall input dynamic range. The readout circuit is designed and in 0.18 μm CMOS and consumes 10.3 mW power from a 1.8 V supply. The circuit has been verified using post-layout simulations.


Sign in / Sign up

Export Citation Format

Share Document