Implementation of Three-Phase Bidirectional Isolated DC-DC Converter with Improved Light-Load Efficiency

Author(s):  
N. Syahira M. Sharifuddin ◽  
Nadia M. L. Tan ◽  
C. L. Toh ◽  
Ahmad Qisti Ramli
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2836
Author(s):  
Nuraina Syahira Mohd Sharifuddin ◽  
Nadia M. L. Tan ◽  
Hirofumi Akagi

This paper presents the performance of a three-phase bidirectional isolated DC-DC converter (3P-BIDC) in wye-wye (Yy), wye-delta (Yd), delta-wye (Dy), and delta-delta (Dd) transformer configurations, using enhanced switching strategy that combines phase-shift modulation and burst-mode switching. A simulation verification using PSCAD is carried out to study the feasibility and compare the efficiency performance of the 3P-BIDC with each transformer configuration, using intermittent switching, which combines the conventional phase-shift modulation (PSM) and burst-mode switching, in the light load condition. The model is tested with continuous switching that employs the conventional PSM from medium to high loads (greater than 0.3 p.u.) and with intermittent switching at light load (less than 0.3 p.u), in different transformer configurations. In all tests, the DC-link voltages are equal to the transformer turns ratio of 1:1. This paper also presents the power loss estimation in continuous and intermittent switching to verify the modelled losses in the 3P-BIDC in the Yy transformer configuration. The 3P-BIDC is modelled by taking into account the effects that on-state voltage drop in the insulated-gate bipolar transistor (IGBTs) and diodes, snubber capacitors, and three-phase transformer copper winding resistances will have on the conduction and switching losses, and copper losses in the 3P-BIDC. The intermitting switching improves the efficiency of the DC-DC converter with Yy, Yd, Dy, and Dd connections in light-load operation. The 3P-BIDC has the best efficiency performance using Yy and Dd transformer configurations for all power transfer conditions in continuous and intermittent switching. Moreover, the highest efficiency of 99.6% is achieved at the light power transfer of 0.29 p.u. in Yy and Dd transformer configurations. However, the theoretical current stress in the 3P-BIDC with a Dd transformer configuration is high. Operation of the converter with Dy transformer configuration is less favorable due to the efficiency achievements of lower than 95%, despite burst-mode switching being applied.


2021 ◽  
Vol 300 ◽  
pp. 01009
Author(s):  
Xiaobin Mu ◽  
Xiang Wang ◽  
Fengjiao Dai

Three-phase dual active bridge converter has many performance advantages, and is widely used in electric vehicle charging, battery energy storage system, power electronic transformer, and other energy conversion occasions. However, in the traditional control method, it has the problem of low efficiency under light load conditions. In this paper, firstly, the power and current expressions of the converter under light load conditions are solved by time-domain analysis, and an optimal current control method under light load conditions is proposed. This control method can simultaneously realize the minimum inductance current stress and RMS. Finally, the effectiveness of this method is verified by experiments.


2010 ◽  
Vol 97-101 ◽  
pp. 2903-2908
Author(s):  
Yu Rong Nan ◽  
Na Meng

Traditional three-phase PFC converters based on one-cycle control (OCC) exhibit instabi- lity at light load conditions.This will cause much more harmonic current which is harmful to the syterm.To overcome this disadvantage, this paper introduces a modified three-phase power factor correction(PFC) converter based on one-cycle control in aircraft electric power system. The input voltage multiplies a gain and its result is added to the actual sensed current,then the sum of them is compared with the sawtooth waveform to yield switching signal.This is the modified contorl mathod. Finally the MATLAB simulations at heavy and light loads as well as the transfer between them are carried. The simulation results show that the improved control circuit can achieve unity power factor and exhibit stability at light loads.


Sign in / Sign up

Export Citation Format

Share Document