Pseudo real-time evaluation of adaptive traffic control strategies using hardware-in-loop simulation

Author(s):  
Eil Kwon ◽  
Sangho Kim ◽  
Taek Mu Kwon
2006 ◽  
Vol 16 (1) ◽  
pp. 3-30
Author(s):  
Dusan Teodorovic ◽  
Jovan Popovic ◽  
Panta Lucic

This paper describes an artificial immune system approach (AIS) to modeling time-dependent (dynamic, real time) transportation phenomenon characterized by uncertainty. The basic idea behind this research is to develop the Artificial Immune System, which generates a set of antibodies (decisions, control actions) that altogether can successfully cover a wide range of potential situations. The proposed artificial immune system develops antibodies (the best control strategies) for different antigens (different traffic "scenarios"). This task is performed using some of the optimization or heuristics techniques. Then a set of antibodies is combined to create Artificial Immune System. The developed Artificial Immune transportation systems are able to generalize, adapt, and learn based on new knowledge and new information. Applications of the systems are considered for airline yield management, the stochastic vehicle routing, and real-time traffic control at the isolated intersection. The preliminary research results are very promising.


2021 ◽  
Author(s):  
Mustafa Shakir ◽  
Sohaib Aslam ◽  
Syed Abdul Wali ◽  
Fakharul Zaman ◽  
Muhammad Qaiser ◽  
...  

Author(s):  
UMAR ASIF ◽  
JAVAID IQBAL

Formal control design techniques usually rely on the plant model of a desired system. The plant model can be derived from the foundation principles of the system but often includes unidentified parameters. In order to approximate these unknown parameters, experiments are conducted to collect information from the behavior of plant dynamics. Thus, closed-loop feedback control methods can be formulated upon the estimation of an appropriate plant model using simulation techniques. Rapid prototyping techniques support this design paradigm which requires that the rapid prototype operate in real time, interact with real hardware and have supporting control functionality. This paper delivers a study on the modeling and testing of a gait generation method using a rapid prototyping technique. The objective is to develop a method of rapid prototyping to test new walking algorithms on a real-time robotic system. The paper addresses the drawbacks of a non-real-time simulation by evaluating the locomotion of a six-legged robot in terms of tracking errors and signifies the proposed methodology of tuning the gait generation algorithm online through real-time hardware in loop simulation setup. Finally, the paper inspects the improved locomotion of the robot using the proposed methodology and signifies it as a valid prototyping technique for approximating novel gait generation algorithms on real-time robotic systems.


2008 ◽  
Vol 35 (4) ◽  
pp. 370-378 ◽  
Author(s):  
Jin-Tae Kim ◽  
Jeongyoon Lee ◽  
Myungsoon Chang

Adaptive traffic control systems (ATCS) are designed to calculate traffic signal timings in real time to accommodate current traffic demand changes. A conventional off-line computer-based design procedure that uses iterative evaluations to select alternatives may not be appropriate for ATCS due to its unstable searching time. Search-free analytical procedures that directly find solutions have been noted for ATCS for this reason. This paper demonstrates (i) the shortcomings of an analytical cycle-length design model, specifically COSMOS, in its ability to generate satisfactory solutions at various saturation levels and (ii) an artificial neural network (ANN) based model that can overcome these shortcomings. The ANN-based model consistently yielded cycle lengths that ensure a proper operational target volume to capacity (v/c) ratio, whereas the use of the analytical model resulted in unstable target v/c ratios that might promote congestion.


2000 ◽  
Vol 1727 (1) ◽  
pp. 95-100 ◽  
Author(s):  
David E. Lucas ◽  
Pitu B. Mirchandani ◽  
K. Larry Head

Simulation is a valuable tool for evaluating the effects of various changes in a transportation system. This is especially true in the case of real-time traffic-adaptive control systems, which must undergo extensive testing in a laboratory setting before being implemented in a field environment. Various types of simulation environments are available, from software-only to hardware-in-the-loop simulations, each of which has a role to play in the implementation of a traffic control system. The RHODES (real-time hierarchical optimized distributed effective system) real-time traffic-adaptive control system was followed as it progressed from a laboratory project toward actual field implementation. The traditional software-only simulation environment and extensions to a hardware-in-the-loop simulation are presented in describing the migration of RHODES onto the traffic controller hardware itself. In addition, a new enhancement to the standard software-only simulation that allows remote access is described. The enhancement removes the requirement that both the simulation and the traffic control scheme reside locally. This architecture is capable of supporting any traffic simulation package that satisfies specific input-output data requirements. This remote simulation environment was tested with several different types of networks and was found to perform in the same manner as its local counterpart. Remote simulation has all of the advantages of its local counterpart, such as control and flexibility, with the added benefit of distribution. This remote environment could be used in many different ways and by different groups or individuals, including state or local transportation agencies interested in performing their own evaluations of alternative traffic control systems.


Sign in / Sign up

Export Citation Format

Share Document