Influence of modeling pitch angle controller on transient behaviour of fixed-speed wind farm

Author(s):  
Fawzi A. Rahman Al-Jowder
2018 ◽  
Vol 222 ◽  
pp. 485-496 ◽  
Author(s):  
Yuqing Jin ◽  
Ping Ju ◽  
Christian Rehtanz ◽  
Feng Wu ◽  
Xueping Pan

Author(s):  
Othman A. Omar ◽  
Niveen M. Badra ◽  
Mahmoud A. Attia ◽  
Ahmed Gad

AbstractElectric power systems are allowing higher penetration levels of renewable energy resources, mainly due to their environmental benefits. The majority of electrical energy generated by renewable energy resources is contributed by wind farms. However, the stochastic nature of these resources does not allow the installed generation capacities to be entirely utilized. In this context, this paper attempts to improve the performance of fixed-speed wind turbines. Turbines of this type have been already installed in some classical wind farms and it is not feasible to replace them with variable-speed ones before their lifetime ends. A fixed-speed turbine is typically connected to the electric grid with a Static VAR Compensator (SVC) across its terminal. For a better dynamic voltage response, the controller gains of a Proportional-Integral (PI) voltage regulator within the SVC will be tuned using a variety of optimization techniques to minimize the integrated square of error for the wind farm terminal voltage. Similarly, the controller gains of the turbine’s pitch angle may be tuned to enhance its dynamic output power performance. Simulation results, in this paper, show that the pitch angle controller causes a significant minimization in the integrated square of error for the wind farm output power. Finally, an advanced Proportional-Integral-Acceleration (PIA) voltage regulator controller has been proposed for the SVC. When the PIA control gains are optimized, they result in a better performance than the classical PI controller.


Author(s):  
Akie Uehara ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
Toshihisa Funabashi

Currently, there are several published reports on wind farms (WFs) for controlling output power by using pitch angle control. In addition, to reduce the adverse effects of frequency deviations, battery energy storage systems (BESSs) are introduced to small power systems. In this context, this paper presents a frequency control method by the WF and the BESS using load estimation. The load is estimated by a disturbance observer. The frequency deviations in low and high frequency domain are reduced by the WF using pitch angle control and battery charge/discharge, respectively. By using the proposed method, the reduction of the rated capacity of the BESS is possible. Furthermore, for the pitch angle control system of each WTG in the WF, generalized predictive control (GPC) is applied to achieve robust control performance. The effectiveness of the proposed method is verified by numerical simulation.


2013 ◽  
Vol 54 ◽  
pp. 124-130 ◽  
Author(s):  
Jaejoon Lee ◽  
Eunkuk Son ◽  
Byungho Hwang ◽  
Soogab Lee

2007 ◽  
Vol 158 (4) ◽  
pp. 31-41 ◽  
Author(s):  
Tomonobu Senjyu ◽  
Ryosei Sakamoto ◽  
Naomitsu Urasaki ◽  
Toshihisa Funabashi ◽  
Hideki Fujita ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 940 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The first part of this work describes the validation of a wind turbine farm Computational Fluid Dynamics (CFD) simulation using literature velocity wake data from the MEXICO (Model Experiments in Controlled Conditions) experiment. The work is intended to establish a computational framework from which to investigate wind farm layout, seeking to validate the simulation and identify parameters influencing the wake. A CFD model was designed to mimic the MEXICO rotor experimental conditions and simulate new operating conditions with regards to tip speed ratio and pitch angle. The validation showed that the computational results qualitatively agree with the experimental data. Considering the designed tip speed ratio (TSR) of 6.6, the deficit of velocity in the wake remains at rate of approximately 15% of the free-stream velocity per rotor diameter regardless of the free-stream velocity applied. Moreover, analysis of a radial traverse right behind the rotor showed an increase of 20% in the velocity deficit as the TSR varied from TSR = 6 to TSR = 10, corresponding to an increase ratio of approximately 5% m·s−1 per dimensionless unit of TSR. We conclude that the near wake characteristics of a wind turbine are strongly influenced by the TSR and the pitch angle.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1328 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The second part of this work describes a wind turbine Computational Fluid Dynamics (CFD) simulation capable of modeling wake effects. The work is intended to establish a computational framework from which to investigate wind farm layout. Following the first part of this work that described the near wake flow field, the physical domain of the validated model in the near wake was adapted and extended to include the far wake. Additionally, the numerical approach implemented allowed to efficiently model the effects of the wake interaction between rows in a wind farm with reduced computational costs. The influence of some wind farm design parameters on the wake development was assessed: Tip Speed Ratio (TSR), free-stream velocity, and pitch angle. The results showed that the velocity and turbulence intensity profiles in the far wake are dependent on the TSR. The wake profile did not present significant sensitivity to the pitch angle for values kept close to the designed condition. The capability of the proposed CFD model showed to be consistent when compared with field data and kinematical models results, presenting similar ranges of wake deficit. In conclusion, the computational models proposed in this work can be used to improve wind farm layout considering wake effects.


Sign in / Sign up

Export Citation Format

Share Document