Maximum Energy Extraction of a Wind Farm Using Pitch Angle Control

Author(s):  
A.Om Prakash ◽  
R.Narmatha Banu ◽  
D. Devaraj
2005 ◽  
Vol 16 (11-12) ◽  
pp. 1057-1066 ◽  
Author(s):  
Fred Nitzsche ◽  
Tim Harold ◽  
Viresh K. Wickramasinghe ◽  
Chen Yong ◽  
David G. Zimcik

2018 ◽  
Vol 222 ◽  
pp. 485-496 ◽  
Author(s):  
Yuqing Jin ◽  
Ping Ju ◽  
Christian Rehtanz ◽  
Feng Wu ◽  
Xueping Pan

2020 ◽  
Author(s):  
Shafiqur Rehman ◽  
Salman A. Khan ◽  
Luai M. Alhems

Abstract The recent revolution in the use of renewable energy worldwide has opened many dimensions of research and development for sustainable energy. In this context, the use of wind energy has received notable attention. One critical decision in the development of a wind farm is the selection of the most appropriate turbine compatible with the characteristics of the geographical location under consideration in order to harness maximum energy. This selection process considers multiple decision criteria which are often in conflict with each other, as improving one criterion negatively affects one or more other criteria. Therefore, it is desired to find a tradeoff solution where all selection criteria are simultaneously optimized to the best possible level. This paper proposes a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) based approach for multi-criteria selection of wind turbine. Three decision criteria, namely, hub height, wind speed, and net capacity factor are used in the decision process. A case study is shown on real data collected from the Aljouf region located at an altitude of 753 meters above sea level in the northern part of Saudi Arabia. Seventeen turbines with rated capacities ranging from 1.5 GW to 3 GW from various manufacturers are evaluated. Results indicate that Vestas V110 turned out to be the most appropriate turbine for the underlying site.


Author(s):  
Othman A. Omar ◽  
Niveen M. Badra ◽  
Mahmoud A. Attia ◽  
Ahmed Gad

AbstractElectric power systems are allowing higher penetration levels of renewable energy resources, mainly due to their environmental benefits. The majority of electrical energy generated by renewable energy resources is contributed by wind farms. However, the stochastic nature of these resources does not allow the installed generation capacities to be entirely utilized. In this context, this paper attempts to improve the performance of fixed-speed wind turbines. Turbines of this type have been already installed in some classical wind farms and it is not feasible to replace them with variable-speed ones before their lifetime ends. A fixed-speed turbine is typically connected to the electric grid with a Static VAR Compensator (SVC) across its terminal. For a better dynamic voltage response, the controller gains of a Proportional-Integral (PI) voltage regulator within the SVC will be tuned using a variety of optimization techniques to minimize the integrated square of error for the wind farm terminal voltage. Similarly, the controller gains of the turbine’s pitch angle may be tuned to enhance its dynamic output power performance. Simulation results, in this paper, show that the pitch angle controller causes a significant minimization in the integrated square of error for the wind farm output power. Finally, an advanced Proportional-Integral-Acceleration (PIA) voltage regulator controller has been proposed for the SVC. When the PIA control gains are optimized, they result in a better performance than the classical PI controller.


Author(s):  
Mahdi Heidari

This paper proposes a new method to extract maximum energy from wind turbine systems. The artificial neural network (ANN) is used to estimate the wind speed based on the rotor speed and the output power. In addition to ANN, a predictive controller is used to maximize the efficiency of the boost converter. The method has been developed and analyzed by utilizing a turbine directly driven permanent-magnet synchronous generator (PMSG). The simulation results verify the performance of the proposed method. Results show that this method maximizes wind energy extraction with more accuracy and fastness.


Author(s):  
Akie Uehara ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
Toshihisa Funabashi

Currently, there are several published reports on wind farms (WFs) for controlling output power by using pitch angle control. In addition, to reduce the adverse effects of frequency deviations, battery energy storage systems (BESSs) are introduced to small power systems. In this context, this paper presents a frequency control method by the WF and the BESS using load estimation. The load is estimated by a disturbance observer. The frequency deviations in low and high frequency domain are reduced by the WF using pitch angle control and battery charge/discharge, respectively. By using the proposed method, the reduction of the rated capacity of the BESS is possible. Furthermore, for the pitch angle control system of each WTG in the WF, generalized predictive control (GPC) is applied to achieve robust control performance. The effectiveness of the proposed method is verified by numerical simulation.


2013 ◽  
Vol 54 ◽  
pp. 124-130 ◽  
Author(s):  
Jaejoon Lee ◽  
Eunkuk Son ◽  
Byungho Hwang ◽  
Soogab Lee

2021 ◽  
Vol 12 (2) ◽  
pp. 155-172
Author(s):  
Zenachew Muluneh ◽  
Gebremichael Teame

In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified.


Sign in / Sign up

Export Citation Format

Share Document