scholarly journals Development of a Computational System to Improve Wind Farm Layout, Part II: Wind Turbine Wakes Interaction

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1328 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The second part of this work describes a wind turbine Computational Fluid Dynamics (CFD) simulation capable of modeling wake effects. The work is intended to establish a computational framework from which to investigate wind farm layout. Following the first part of this work that described the near wake flow field, the physical domain of the validated model in the near wake was adapted and extended to include the far wake. Additionally, the numerical approach implemented allowed to efficiently model the effects of the wake interaction between rows in a wind farm with reduced computational costs. The influence of some wind farm design parameters on the wake development was assessed: Tip Speed Ratio (TSR), free-stream velocity, and pitch angle. The results showed that the velocity and turbulence intensity profiles in the far wake are dependent on the TSR. The wake profile did not present significant sensitivity to the pitch angle for values kept close to the designed condition. The capability of the proposed CFD model showed to be consistent when compared with field data and kinematical models results, presenting similar ranges of wake deficit. In conclusion, the computational models proposed in this work can be used to improve wind farm layout considering wake effects.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 940 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The first part of this work describes the validation of a wind turbine farm Computational Fluid Dynamics (CFD) simulation using literature velocity wake data from the MEXICO (Model Experiments in Controlled Conditions) experiment. The work is intended to establish a computational framework from which to investigate wind farm layout, seeking to validate the simulation and identify parameters influencing the wake. A CFD model was designed to mimic the MEXICO rotor experimental conditions and simulate new operating conditions with regards to tip speed ratio and pitch angle. The validation showed that the computational results qualitatively agree with the experimental data. Considering the designed tip speed ratio (TSR) of 6.6, the deficit of velocity in the wake remains at rate of approximately 15% of the free-stream velocity per rotor diameter regardless of the free-stream velocity applied. Moreover, analysis of a radial traverse right behind the rotor showed an increase of 20% in the velocity deficit as the TSR varied from TSR = 6 to TSR = 10, corresponding to an increase ratio of approximately 5% m·s−1 per dimensionless unit of TSR. We conclude that the near wake characteristics of a wind turbine are strongly influenced by the TSR and the pitch angle.


2019 ◽  
Author(s):  
Maarten Paul van der Laan ◽  
Søren Juhl Anderson ◽  
Néstor Ramos García ◽  
Nikolas Angelou ◽  
Georg Raimund Pirrung ◽  
...  

Abstract. Numerical simulations of the Vestas multi-rotor demonstrator (4R-V29) are compared with field measurements of power performance and remote sensing measurements of the wake deficit by a short-range WindScanner lidar system. The simulations predict a gain of 0–2 % in power due to the rotor interaction, for wind speeds below rated. The power curve measurements also show that the rotor interaction increases the power performance below rated by 1.8 ± 0.2 %, which can result in a 1.5 ± 0.2 % increase in the annual energy production. The wake measurements and numerical simulations show four distinct wake deficits in the near wake, which merge into a single wake structure further downstream. Numerical simulations show that the wake recovery distance of a simplified 4R-V29 wind turbine is 1.03–1.44 Deq shorter than for an equivalent single-rotor wind turbine with a rotor diameter Deq. In addition, the numerical simulations show that the added wake turbulence of the simplified 4R-V29 wind turbine is lower in the far wake compared to the equivalent single-rotor wind turbine. The faster wake recovery and lower far-wake turbulence of such a multi-rotor wind turbine has the potential to reduce the wind turbine spacing within a wind farm while providing the same production.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) with co- and counter-rotating configurations, in comparison to those of a conventional singlerotor wind turbine (SRWT), in order to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability. The experiments were performed in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT systems, static and dynamic wind loads acting on those systems were also investigated. Furthermore, a high resolution PIV system was used for detailed near wake flow field measurements (free-run and phase-locked) so as to quantify the near wake turbulent flow structures and observe the transient behavior of the unsteady vortex structures in the wake of DRWT and SRWT systems. In the light of the promising experimental results on DRWTs, this study can be extended further to investigate the turbulent flow in the far wake of DRWTs and utilize multiple DRWTs in different wind farm operations.


2013 ◽  
Author(s):  
Bryan Kaiser ◽  
Svetlana Poroseva ◽  
Erick L. Johnson ◽  
Rob Hovsapian

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Wei Zhang ◽  
Hui Yang ◽  
Hua-Shu Dou ◽  
Zuchao Zhu

The present study investigates the two-dimensional flow past an inclined triangular cylinder at Re = 100. Numerical simulation is performed to explore the effect of cylinder inclination on the aerodynamic quantities, unsteady flow patterns, time-averaged flow characteristics, and flow unsteadiness. We also provide the first global linear stability analysis and sensitivity analysis on the targeted physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of cylinder inclination on the characteristic quantities and unsteady flow patterns, with emphasis on the flow unsteadiness and instability. Numerical results reveal that the flow unsteadiness is generally more pronounced for the base-facing-like cylinders (α → 60 deg) where separation occurs at the front corners. The inclined cylinder reduces the velocity deficiency in the near-wake, and the reduction in far-wake is the most notable for the α = 30 deg cylinder. The transverse distributions of several quantities are shifted toward the negative y-direction, such as the maximum velocity deficiency and maximum/minimum velocity fluctuation. Finally, the global stability and sensitivity analysis show that the spatial structures of perturbed velocities are quite similar for α ≤ 30 deg and the temporal growth rate of perturbation is sensitive to the near-wake flow, while for α ≥ 40 deg there are remarkable transverse expansion and streamwise elongation of the perturbed velocities, and the growth rate is sensitive to the far-wake flow.


Author(s):  
Pengyin Liu ◽  
Jinge Chen ◽  
Shen Xin ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

In this paper, a slotted tip structure is experimentally analyzed. A wind turbine with three blades, of which the radius is 301.74mm, is investigated by the PIV method. Each wind turbine blade is formed with a slots system comprising four internal tube members embedded in the blade. The inlets of the internal tube member are located at the leading edge of the blade and form an inlet array. The outlets are located at the blade tip face and form an outlet array. The near wake flow field of the wind turbine with slotted tip and without slotted tip are both measured. Velocity field of near wake region and clear images of the tip vortex are captured under different wake ages. The experimental results show that the radius of the tip vortex core is enlarged by the slotted tip at any wake age compared with that of original wind turbine. Moreover, the diffusion process of the tip vortex is accelerated by the slotted tip which lead to the disappearance of the tip vortex occurs at smaller wake age. The strength of the tip vortex is also reduced indicating that the flow field in the near wake of wind turbine is improved. The experimental data are further analyzed with the vortex core model to reveal the flow mechanism of this kind of flow control method. The turbulence coefficient of the vortex core model for wind turbine is obtained from the experimental data of the wind turbine with and without slotted tip. It shows that the slotted tip increases the turbulence strength in the tip vortex core by importing airflow into the tip vortex core during its initial generation stage, which leads to the reduction of the tip vortex strength. Therefore, it is promising that the slotted tip can be used to weaken the vorticity and accelerate the diffusion of the tip vortex which would improve the problem caused by the tip vortex.


Author(s):  
Ojing Siram ◽  
Niranjan Sahoo

Abstract In the present research article results on wind turbine blade tip vortex have been presented, the measurements have been done behind a model scale of horizontal axis wind turbine rotor. The rotor used for flow characterization is a three-bladed having NACA0012 cross-section, the study has been performed for low range tip speed ratio of 0–2 and wind speeds range of 3–6 m/s. The investigation has been conducted specifically to near wake regime, which is often expressed as the region of regular helical vortex structures. Although this nature of regular helical vortex pattern has always been a question of debate with respect to changes in the flow condition, rotor geometry and point of measurements. A systematic experiment was done mainly on the frequency of vortex shedding through hot-wire anemometry (HWA), and the corresponding frequency is express in terms of Strouhal number. Present article work within near wake regime includes tip vortex shedding stability analysis for different blade pitch angle and flow condition. From the systematic experimental observation, the evaluated data indicate that the Strouhal number has an incremental trend when the blade pitch angle is close to 40°, and above it inconsistency in frequency response is observed.


2016 ◽  
Vol 33 (3) ◽  
pp. 481-501 ◽  
Author(s):  
Niranjan S. Ghaisas ◽  
Cristina L. Archer

AbstractLayout studies are critical in designing large wind farms, since wake effects can lead to significant reductions in power generation. Optimizing wind farm layout using computational fluid dynamics is practically unfeasible today because of their enormous computational requirements. Simple statistical models, based on geometric quantities associated with the wind farm layout, are therefore attractive because they are less demanding computationally. Results of large-eddy simulations of the Lillgrund (Sweden) offshore wind farm are used here to calibrate such geometry-based models. Several geometric quantities (e.g., blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by upstream turbines) and their linear combinations are found to correlate very well (correlation coefficient of ~0.95) with the power generated by the turbines. Linear models based on these geometric quantities are accurate at predicting the farm-averaged power and are therefore used here to study layout effects in large wind farms. The layout parameters that are considered include angle between rows and columns, angle between incoming wind and columns (orientation), turbine spacings, and staggering of alternate rows. Each can impact wind power production positively or negatively, and their interplay is complex. The orientation angle is the most critical parameter influencing wake losses, as small changes in it can cause sharp variations in power. In general, for a prevailing wind direction, the orientation angle should be small (7.5°–20°) but not zero; staggering and spacing are beneficial; and nonorthogonal layouts may outperform orthogonal ones. This study demonstrates the utility of simple, inexpensive, and reasonably accurate geometry-based models to identify general principles governing optimal wind farm layout.


2014 ◽  
Vol 41 (15) ◽  
pp. 6585-6595 ◽  
Author(s):  
Francisco G. Montoya ◽  
Francisco Manzano-Agugliaro ◽  
Sergio López-Márquez ◽  
Quetzalcoatl Hernández-Escobedo ◽  
Consolación Gil

Sign in / Sign up

Export Citation Format

Share Document