scholarly journals Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 940 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The first part of this work describes the validation of a wind turbine farm Computational Fluid Dynamics (CFD) simulation using literature velocity wake data from the MEXICO (Model Experiments in Controlled Conditions) experiment. The work is intended to establish a computational framework from which to investigate wind farm layout, seeking to validate the simulation and identify parameters influencing the wake. A CFD model was designed to mimic the MEXICO rotor experimental conditions and simulate new operating conditions with regards to tip speed ratio and pitch angle. The validation showed that the computational results qualitatively agree with the experimental data. Considering the designed tip speed ratio (TSR) of 6.6, the deficit of velocity in the wake remains at rate of approximately 15% of the free-stream velocity per rotor diameter regardless of the free-stream velocity applied. Moreover, analysis of a radial traverse right behind the rotor showed an increase of 20% in the velocity deficit as the TSR varied from TSR = 6 to TSR = 10, corresponding to an increase ratio of approximately 5% m·s−1 per dimensionless unit of TSR. We conclude that the near wake characteristics of a wind turbine are strongly influenced by the TSR and the pitch angle.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1328 ◽  
Author(s):  
Rafael Rodrigues ◽  
Corinne Lengsfeld

The second part of this work describes a wind turbine Computational Fluid Dynamics (CFD) simulation capable of modeling wake effects. The work is intended to establish a computational framework from which to investigate wind farm layout. Following the first part of this work that described the near wake flow field, the physical domain of the validated model in the near wake was adapted and extended to include the far wake. Additionally, the numerical approach implemented allowed to efficiently model the effects of the wake interaction between rows in a wind farm with reduced computational costs. The influence of some wind farm design parameters on the wake development was assessed: Tip Speed Ratio (TSR), free-stream velocity, and pitch angle. The results showed that the velocity and turbulence intensity profiles in the far wake are dependent on the TSR. The wake profile did not present significant sensitivity to the pitch angle for values kept close to the designed condition. The capability of the proposed CFD model showed to be consistent when compared with field data and kinematical models results, presenting similar ranges of wake deficit. In conclusion, the computational models proposed in this work can be used to improve wind farm layout considering wake effects.


2020 ◽  
Author(s):  
Milad Babadi Soultanzadeh ◽  
Alireza Moradi

Abstract Numerical and experimental studies were performed to examined the influence of pitch angle on the aerodynamic performance of a small Darrieus straight blade vertical axis wind turbine with high solidity and pitch regulation system under a realistic condition. By comparing experimental and numerical results, numerical results were validated. The power coefficient was measured and calculated at different tip speed ratios and for two pitch angles 0 and 5. The results revealed that 5 degrees increase in the pitch angle led to 25% elevation in the maximum value of the power coefficient (performance coefficient). Also, the numerical results showed higher accuracy at lower tip speed ratios for both pitch angles. After numerical method validation, numerical method employed to calculate the coefficient of performance and coefficient of torque function of Azimuth position as well as the flow field in the rotor affected zone and lateral distance. According to the numerical results, vorticity generation increased by the rise in the pitch angle at a constant tip speed ratio; the maximum performance coefficient occurred at a lower tip speed ratio with elevation in the pitch angle; finally, the increment in the pitch angle led to lower velocity profile in lateral distances of the rotor.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Mohamed M. Hammam ◽  
David H. Wood ◽  
Curran Crawford

A simple unsteady blade element analysis is used to account for the effect of the trailing wake on the induced velocity of a wind turbine rotor undergoing fast changes in pitch angle. At sufficiently high tip speed ratio, the equation describing the thrust of the element reduces to a first order, nonlinear Riccti's equation which is solved in a closed form for a ramp change in pitch followed by a constant pitch. Finite tip speed ratio results in a first order, nonlinear Abel's equation. The unsteady aerodynamic forces on the NREL VI wind turbine are analyzed at different pitch rates and tip speed ratio, and it is found that the overshoot in the forces increases as the tip speed ratio and/or the pitch angle increase. The analytical solution of the Riccati's equation and numerical solution of Abel's equation gave very similar results at high tip speed ratio but the solutions differ as the tip speed ratio reduces, partly because the Abel's equation was found to magnify the error of assuming linear lift at low tip speed ratio. The unsteady tangential induction factor is expressed in the form of first order differential equation with the time constant estimated using Jowkowsky's vortex model and it was found that it is negligible for large tip speed ratio operation.


2014 ◽  
Vol 555 ◽  
pp. 012022
Author(s):  
A Cuerva-Tejero ◽  
O Lopez-Garcia ◽  
D Marangoni ◽  
F González-Meruelo

2014 ◽  
Vol 651-653 ◽  
pp. 663-667 ◽  
Author(s):  
Jing Ru Chen ◽  
Zhen Zhou Zhao ◽  
Tao Li

The paper analyzes the effect of airfoil thickness, camber and blade pitch angle on the performance of the three-bladed Darrieus wind turbines. The research results show that the increase of airfoil thickness, camber and pitch angle of blade, can improve power coefficient when the wind turbine tip speed ratio between zero and four. The increase of thickness and camber of the airfoil leads to running tip speed ratio range of wind turbine get narrowed, and reduces the power coefficient when wind turbine runs in high tip speed ratio range. When the pitch angle of blade is 1˚, power coefficient reaches the maximum value. Negative pitch angle has a bad impact on power coefficient and even creates negative power coefficients.


2012 ◽  
Vol 488-489 ◽  
pp. 1055-1061 ◽  
Author(s):  
W.C. Hsieh ◽  
J.M. Miao ◽  
C.C. Lai ◽  
C.S. Tai

The experimental studies of output power performances of a vertical-axis-wind-turbine (VAWT) had been conducted in suction-type low speed wind tunnel with various free stream velocity. Torque and rotation speed of blades were measured by using torque meter and optical detector to analyze the effect of blade-section shape on the performance of wind turbine. The test model of experiments in the research was H-rotor VAWT. Three shapes of the NACA 4-digital series blade-section, NACA0022, NACA6404, and NACA6422 were taken in this work. Effects of thickness and camber of blade-section, blade numbers, and blade setting angles on the performance of VAWT have been analyzed in detail. The results show that NACA6422 blade-section has rotation speed of 42% higher than that of NACA0022 when the free stream velocity is below 12 m/s and the blade numbers are 4-blade type. Wind turbines with NACA6422 blades also showed that about 10% higher output power than that of NACA0022 blades among the tested range of free stream velocity. Results indicated that wind turbine with blades of anti-symmetric and thick blade-section was generally more suitable for applying to VAWT. All results of this study can be used the optimization design of VAWT blades in further.


2018 ◽  
Vol 846 ◽  
pp. 190-209 ◽  
Author(s):  
X. Mao ◽  
J. N. Sørensen

A novel algorithm is developed to calculate the nonlinear optimal boundary perturbations in three-dimensional incompressible flow. An optimal step length in the optimization loop is calculated without any additional calls to the Navier–Stokes equations. The algorithm is applied to compute the optimal inflow eddies for the flow around a wind turbine to clarify the mechanisms behind wake meandering, a phenomenon usually observed in wind farms. The turbine is modelled as an actuator disc using an immersed boundary method with the loading prescribed as a body force. At Reynolds number (based on free-stream velocity and turbine radius) $Re=1000$, the most energetic inflow perturbation has a frequency $\unicode[STIX]{x1D714}=0.8$–2, and is in the form of an azimuthal wave with wavenumber $m=1$ and the same radius as the actuator disc. The inflow perturbation is amplified by the strong shear downstream of the edge of the disc and then tilts the rolling-up vortex rings to induce wake meandering. This mechanism is verified by studying randomly perturbed flow at $Re\leqslant 8000$. At five turbine diameters downstream of the disc, the axial velocity oscillates at a magnitude of more than 60 % of the free-stream velocity when the magnitude of the inflow perturbation is 6 % of the free-stream wind speed. The dominant Strouhal number of the wake oscillation is 0.16 at $Re=3000$ and keeps approximately constant at higher $Re$. This Strouhal number agrees well with previous experimental findings. Overall the observations indicate that the well-observed stochastic wake meandering phenomenon appearing far downstream of wind turbines is induced by large-scale (the same order as the turbine rotor) and low-frequency free-stream eddies.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 996
Author(s):  
Liang Li ◽  
Inderjit Chopra ◽  
Weidong Zhu ◽  
Meilin Yu

In this work, the aerodynamic performance and optimization of a vertical-axis wind turbine with a high tip-speed ratio are theoretically studied on the basis of the two-dimensional airfoil theory. By dividing the rotating plane of the airfoil into the upwind and downwind areas, the relationship among the angle of attack, azimuth, pitch angle, and tip-speed ratio is derived using the quasi-steady aerodynamic model, and aerodynamic loads on the airfoil are then obtained. By applying the polynomial approximation to functions of lift and drag coefficients with the angle of attack for symmetric and asymmetric airfoils, respectively, explicit expressions of aerodynamic loads as functions of the angle of attack are obtained. The performance of a fixed-pitch blade is studied by employing a NACA0012 model, and influences of the tip speed ratio, pitch angle, chord length, rotor radius, incoming wind speed and rotational speed on the performance of the blade are discussed. Furthermore, the optimization problem based on the dynamic-pitch method is investigated by considering the maximum value problem of the instantaneous torque as a function of the pitch angle. Dynamic-pitch laws for symmetric and asymmetric airfoils are derived.


Author(s):  
Naoki Sekiya

Abstract Several models have been proposed to predict the shaft output characteristics of the vertical axis wind turbine from the aerodynamic characteristics of the blade. However, it has not predicted the output characteristics of the small wind turbine, turbine diameter less than 1 m, even the multiple stream tube model included effect of the momentum reduction. A solidity of the small wind turbine become higher than large, i.e. blades interval of small wind turbine becomes short. Therefore, it expects that the wake of preceding blade influence strongly aerodynamic character of following blade. Thus, we have investigated the relation between wake of rotating turbine and its shaft output characteristics. From result obtain, we had cleared the shaft output character agree with variation of momentum loss of the wake of turbine. Moreover, the relevance between the shaft output characteristics and velocity fluctuation in the wake had been found. In the low tip speed ratio region increasing the shaft output, the periodical component synchronized with motion of the blade remarkably appear in velocity fluctuation, and it disappear near the peak of shaft output. Meanwhile, in the high tip speed ratio region decreasing the shaft output, the turbulent component is dominant in velocity fluctuation. It indicates that the blade-wake interference was affected on shaft output of the small wind turbine. Therefore, the purpose of this study was to find out a similarity parameter of the shaft output characteristics based on blade-wake interference. The larger the scale of blade wake or slower the advection velocity of it, the higher the possibility that blade wake generated from previous blade interfere to following blade become. For blade-wake interaction, these two parameters which the scale and the advection velocity of blade wake, are important. Thus, I estimated these parameter in this study using the wind turbine model with single blade. From measurement of the blade wake, I found that the scale of the blade wake depends on the ratio of the rotational speed of the turbine to the free stream velocity, and the advection velocity of blade wake depends on the free stream velocity. From these characteristics of blade wake, I suggest a new parameter based on the blade-wake interaction using tip speed ratio, solidity, number of blade, and turbine diameter. The shaft output characteristics of the small wind turbine indicates good similarity for the new parameter.


Sign in / Sign up

Export Citation Format

Share Document